首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The assisted reproductive techniques (ARTs) such as in vitro fertilization, embryo transfer, and cryopreservation of gametes have contributed considerably to the development of biomedical sciences in addition to improving infertility treatments in humans as well as the breeding of domestic animals. However, ARTs used in canine species have strictly limited utility when compared with other mammalian species, including humans. Although successful somatic cell cloning has been reported, artificial insemination by frozen semen to date is only available for the improved breeding and reproduction for companion and working dogs as well as guide dogs for the blind. We describe here the successful cryopreservation of embryos and subsequent embryo transfer in dogs. Canine embryos were collected from excised reproductive organs after artificial insemination and subsequently cryopreserved by a vitrification method. When the 4-cell to morula stage of cryopreserved embryos were nonsurgically transferred into the uteri of nine recipient bitches using a cystoscope, five recipients became pregnant and four of them delivered a total of seven pups. The cryopreservation of embryos in canine species will facilitate the transportation and storage of genetic materials and will aid in the elimination of vertically transmitted diseases in dogs. In addition, this technique will contribute to the improved breeding of companion and working dogs such as guide dogs, drug-detecting dogs, and quarantine dogs.  相似文献   

2.
This review brings together research findings on cervical relaxation in the ewe and its pharmacological stimulation for enhancement of the penetration needed for transcervical insemination and embryo transfer. On the basis that the success of artificial insemination is the percentage of ewes lambing, a review is made of recent research aimed at understanding and minimising the sub-lethal effects of freezing and thawing on the viability of spermatozoa, their membrane integrity and their ability to migrate through cervical mucus, as these characteristics have a major influence on fertility, particularly when semen is deposited, artificially, in the os cervix. Milestones of achievement are given for transcervical intrauterine insemination, embryo recovery and transfer and the birth of lambs of pre-determined sex, firstly following intracytoplasmic sperm injection, then laparoscopic intrauterine insemination using highly diluted flow-cytometrically sorted fresh semen and subsequently by os cervix insemination using sexed semen that had been frozen and thawed. Diversity of research endeavour (applied, cellular, molecular), research discipline (anatomy, histology, immunology, endocrinology) and research focus (cell, tissue, organ, whole animal) is embraced within the review as each has significant contributions to make in advancing recent scientific findings from the laboratory into robust on-farm transcervical insemination and embryo transfer techniques.  相似文献   

3.
Breeding technologies play a significant role in improving dairy cattle production. Scientifically proven tools for improved management and genetic gain in dairy herds, such as sexed semen, beef semen, genomic testing, dairy crossbreeding, and multiple ovulation embryo transfer (MOET), are readily available to dairy farmers. However, despite good accessibility, decreasing costs, and continuous development of these tools, their use in Sweden is limited. This study investigated Swedish dairy farmers' preferences for breeding tools through a survey including a discrete choice experiment. The survey was distributed online to 1 521 Swedish farmers and by an open link published through a farming magazine. In total, the study included 204 completed responses. The discrete choice experiment consisted of 10 questions with two alternative combinations, which gave 48 combinations in total. Utility values and part-worth values were computed using a conditional logit model based on the responses in the discrete choice experiment for nine groups of respondents: one group with all respondents, two groups based on respondents using dairy crossbreeding or not within the past 12 months, two based on herd size, two based on respondent age, and two based on whether respondents had used breeding advisory services or not. The strongest preferences in all groups were for using sexed semen and beef semen. Genomic testing was also significantly preferred by all groups of respondents. Except in large herds, MOET on own animals was significantly and relatively strongly disfavoured by all groups. Buying embryos had no significant utility value to any group. Dairy crossbreeding had low and insignificant utility values in the group of all respondents, but it was strongly favoured by the group that had used dairy crossbreeding within the past 12 months, and it was disfavoured by the group that had not. Part-worth values of combined breeding tools showed that combinations of sexed and beef semen, alone or with genomic testing without dairy crossbreeding, were the most preferred tools. Compared with the most common combinations of breeding tools used in the past 12 months, the part-worth values indicated that Swedish dairy farmers may prefer to use breeding tools more than they do today. Statements on the different breeding tools indicated that the respondents agreed with the benefits attributed to the breeding tools, but these benefits may not be worth the cost of genomic testing and the time consumption of MOET. These valuable insights can be used for further development of breeding tools.  相似文献   

4.
Flow cytometry sex-sorting technology was developed in 1989. However, it is only the bovine species in which offspring of the desired sex are obtained at a commercial level. The aim of the present work was to evaluate efficiency parameters when using fresh sexed semen in a large-scale equine commercial embryo transfer program. During the 2009, 2010 and 2011 breeding seasons, 938 synchronized cycles were artificially inseminated. One hundred (10.6%) mares failed to ovulate, and for the remaining 838 useable cycles, 887 doses of sexed semen were used, representing 1.06 doses per cycle. In general, 435 (51.9%) out of 838 flushing performed resulted in the recovery of at least one embryo and 496 (59.1%) embryos were recovered, including twins and triplets. Pregnancy rate at 25 days achieved 81.5% (one embryo transferred per recipient). Embryo recovery rate was not statistically different either between preovulatory and postovulatory artificially inseminated mares or when increased quantities of sexed sperm per dose were used (15–45 million) (P > 0.05). A broad variation in embryo recovery rate was observed between the different stallions used in this study. Sex accuracy of the sex sorting assessed by ultrasound fetal sex determination was 90.3%. Finally, overall efficiency (female embryo pregnancies per useable cycles) was 39% (325/838), meaning that to obtain a female pregnancy of at least 75 days it was necessary to perform 2.5 flushing.  相似文献   

5.
A sophisticated understanding of reproductive physiology of domestic animals has evolved over only the past several decades. Related technical advances in this field have permitted propagation through artificial insemination and/or embryo transfer using fresh or frozen-thawed gametic or embryonic material. More recent studies in genetic engineering and embryo micromanipulation have generated additional potential for improved reproductive efficiency in the farm-animal industry. Although these procedures provide incentive for solving management problems and improving the endangered status of many zoological species, achieving these objectives will be neither simple nor immediate. Major obstacles to confront include the poor image of research, unavailability of research stocks, lack of financial support, scarcity of trained personnel, and the idea that new reproductive techniques offer a “quick fix” to the problem of inadequate reproduction in an endangered species. Zoological researchers should now concentrate on establishing basic reproductive relationships in species of interest. Comparative studies in domesticated animals will accelerate progress. The immediate goal should be the production of sound scientific data of publishable quality. Only then can artificial propagation be considered as a viable alternative to preserving wildlife species.  相似文献   

6.
由于犬具有一些独特的生殖生理特点,使犬的繁殖调控技术的发展一直面临着一些困难。目前犬繁殖调控技术的研究远远落后于其他哺乳动物。本文综述了犬诱导发情、精液保存、人工受精、胚胎移植及克隆等犬的繁殖调控技术国内外研究进展。  相似文献   

7.
Assisted reproductive technology in canid species   总被引:6,自引:0,他引:6  
Farstad W 《Theriogenology》2000,53(1):175-186
Assisted reproductive technologies in dogs began as early as the 18th century. The first scientifically recorded artificial insemination (AI) was performed in Italy by Spallanzani and lead to the birth of three pups. Progress in the area was slow, and subsequent development included AI equipment and methods for short-term preservation of fresh, and later, for frozen semen which led to the world's first litter produced from frozen semen in 1969. Improvement of freezing methods and AI equipment from 1970 onwards has rendered AI useful as a breeding technique for dogs. In parallel, AI in foxes was developed in Scandinavia in the early 1980's; this resulted in the economically valuable crossbreeding of silver and blue foxes for the production of bluefrost pelts. Unfortunately, due to the particular physiology of the canine female, progress in other artificial breeding techniques has lagged behind. Only in the last few years have these techniques been successfully applied in basic research to study oocyte maturation, in vitro fertilization, embryo cryopreservation and embryo transfer in canids.  相似文献   

8.
The maintenance of genetic diversity in captive populations is a primary goal of captive breeding plans, and it is becoming increasingly apparent that reproductive technology has much to offer captive breeding programs in attaining this goal. Reproductive technology can best assist captive breeding programs in this task by developing strategies that effectively increase the genetic contribution of new wild founders to a population as well as increase the reproductive life span of existing founders and their close descendents. This will act to reduce genetic drift and inbreeding effects in the population and thereby minimize the loss of genetic diversity. Considering only one aspect of reproductive technology, semen collection, this paper examines some of the genetic considerations that might be used for choosing which males in a population to collect semen from, assuming the goal of the captive breeding program is the preservation of genetic diversity. It is shown that semen collection and preservation, with future intent of artificial insemination, can make significant contributions to the maintenance of genetic diversity if careful consideration is given to the selection of donor males. Finally, the pedigree of the captive population of Asian lions (Panthera leo persica) is used to illustrate some of these genetic concepts that might be important in selecting males as semen donors.  相似文献   

9.
Artificial insemination (AI) and semen freezing have become services available to dog owners worldwide, and the demand for services to freeze semen is increasing. In other canids such as the fox, the fur industry utilizes fresh or frozen semen to artificially inseminate vixens to produce pelts. Clearly, AI facilitates the use of a male to sire several females by diluting the ejaculate, increases breeding hygiene, and allows crossing between species with slightly different breeding seasons. The African wild dog (Lycaon pictus) is currently considered by the World Conservation Union (IUCN) as one of most endangered canids. In captive populations of African wild dogs, semen has been frozen with encouraging results, using a standard cryopreservation protocol for domestic dogs, but successful AI has not been reported. In wolves, there is one report regarding the live birth of an offspring after intravaginal AI of a deslorelin-induced estrous female. In 2005, three Mexican gray wolf females were artificially bred by intrauterine insemination with freshly collected semen from unrelated males, and all females whelped. Artificial insemination may be vaginal, intrauterine or intratubal, and the semen may be fresh, fresh and chilled (diluted), or frozen-thawed, and the source of semen may be epididymal or ejaculated. In the domestic dog, the results are good to excellent for AI with all three types of processed semen when the source is ejaculated semen, whereas epididymal sperm still yields poorer results. Species differences in female physiology, as well as differences in the cryotolerance of the sperm from various canid species, warrant further research and development.  相似文献   

10.
The Reproductive Studies Unit of the New York Zoological Society addresses several areas of exotic animal reproduction. These include semen collection and freezing, embryo transfer in the gaur, study of normal reproductive anatomy, urinary hormone analysis of cycling and pregnant females, and postmortem collection and freezing of oocytes. The primary goal is development of exotic species gene banks.  相似文献   

11.
Genome resource banks (GRBs) have the potential to preserve the genetic diversity of a species over time, yet they are rarely utilized as effective components of conservation breeding programs. Advances have been made in reproductive biology, collection and storage techniques, and use of stored gametes for achieving successful reproduction, but there are few guidelines for integrating GRBs into established breeding programs. Here we present basic guidelines, focusing on strategies for the collection, maintenance, and use of semen GRBs for protecting genetic diversity. These guidelines should be applied in the context of the specific purposes and roles of a breeding program's GRB, which will differ among species depending on vulnerability to loss and the status of rescue and conservation efforts. We recommend establishing up to three types of collections: (1) a National Reserve to preserve a species' genetic diversity, to be used only as a last resort; (2) a Savings Account to be used periodically to invigorate a genetically depauperate population; and (3) a Checking Account to be used as a regular part of the breeding program. We present methods for identifying donors to maximize genetic diversity in a GRB, as well as strategies for maintaining and optimally using GRBs.  相似文献   

12.
The development of a semen storage program at a zoo will be difficult since the factors involved with freezing semen and insemination procedures that apply to one species will not in all probability apply to another. Animal management influences both the initial quantity and quality of semen. Semen collection methods used on domestic species can be applied to wildlife. Many methods of semen evaluation of fresh or frozen semen are available, but in some species only one may be significant—a live offspring from an insemination of a female. Many variables and their interactions in semen processing must be considered when working with each species: extender, glycerol levels, cell numbers per package, cooling rates, thawing rates, and equilibration time. Periodic communication and cooperation among the people directly involved will be paramount enhancing the advancement of semen cryopreservation in exotic species.  相似文献   

13.

Background

Female reproductive technologies such as multiple ovulation and embryo transfer (MOET) and juvenile in vitro embryo production and embryo transfer (JIVET) can boost rates of genetic gain but they can also increase rates of inbreeding. Inbreeding can be managed using the principles of optimal contribution selection (OCS), which maximizes genetic gain while placing a penalty on the rate of inbreeding. We evaluated the potential benefits and synergies that exist between genomic selection (GS) and reproductive technologies under OCS for sheep and cattle breeding programs.

Methods

Various breeding program scenarios were simulated stochastically including: (1) a sheep breeding program for the selection of a single trait that could be measured either early or late in life; (2) a beef breeding program with an early or late trait; and (3) a dairy breeding program with a sex limited trait. OCS was applied using a range of penalties (severe to no penalty) on co-ancestry of selection candidates, with the possibility of using multiple ovulation and embryo transfer (MOET) and/or juvenile in vitro embryo production and embryo transfer (JIVET) for females. Each breeding program was simulated with and without genomic selection.

Results

All breeding programs could be penalized to result in an inbreeding rate of 1 % increase per generation. The addition of MOET to artificial insemination or natural breeding (AI/N), without the use of GS yielded an extra 25 to 60 % genetic gain. The further addition of JIVET did not yield an extra genetic gain. When GS was used, MOET and MOET + JIVET programs increased rates of genetic gain by 38 to 76 % and 51 to 81 % compared to AI/N, respectively.

Conclusions

Large increases in genetic gain were found across species when female reproductive technologies combined with genomic selection were applied and inbreeding was managed, especially for breeding programs that focus on the selection of traits measured late in life or that are sex-limited. Optimal contribution selection was an effective tool to optimally allocate different combinations of reproductive technologies. Applying a range of penalties to co-ancestry of selection candidates allows a comprehensive exploration of the inbreeding vs. genetic gain space.  相似文献   

14.
Extinction of a species represents the loss of a resource evolved through eons of mutations and natural selection. Reproductive technologies, including artificial insemination, embryo transfer, in vitro fertilization, gamete/embryo micromanipulation, semen sexing, and genome resource banking (GRB) have all been developed with the aim of solving existing problems and preserving genetic material for conservation purposes. Although protocols from domestic or non-threatened related species have been extrapolated to nondomestic and endangered species, usually these reproductive technologies are species-specific and inefficient in many nondomestic species because of insufficient knowledge on their basic reproduction biology and the need for species-specific customization. Since spermatozoa are usually more accessible and come in large numbers compared to oocytes and embryos, they are considered the primary cell type preserved in most emerging GRBs. For this purpose, semen from endangered species is currently cryopreserved to avail long-term storage. Due to the intractability of most exotic species, semen collection without chemical restraint is limited to only a handful of species and individuals. Viable epididymal spermatozoa can be obtained from dead or castrated animals, but this resource is limited. Electroejaculation, artificial vagina, abdominal massage, and/or transrectal, ultrasound-guided, massage of the accessory sex glands of living animals are viable alternative methods of semen collection. The ultimate goal is to adapt and optimize collection and cryopreservation protocols for each species, making it feasible, among other things, to collect gametes in the wild and introduce them into captive or isolated populations to increase genetic diversity. Recent advances in these fields have allowed the establishment of GRBs for many threatened species.  相似文献   

15.
The use of sexed semen in farm animal production and genetic improvement has been shown to be feasible with variable degree of efficiency in a number of species, and proved to be economically viable in cattle. In the last two decades, various newly developed reproductive technologies applicable in buffaloes have mushroomed. Recently, following the birth of the first buffalo calves using AI with sexed semen, commercial interest to exploit sexing of semen in this species too is aroused. In order to verify the successful adoption of this technology in the buffalo, the present study on the use of sexed semen for AI was carried out and compared with conventional artificial insemination using nonsexed semen. A total of 379 buffalo heifers were used for synchronization of ovulation using the Presynch protocol in the South of Italy. Selected animals at the time of AI were randomly allocated to three different experiment groups: (1) 102 animals subjected to AI in the body of the uterus with sexed semen (SS body); (2) 104 animals subjected to AI in the horn of the uterus with sexed semen (SS horn); and (3) 106 animals subjected to AI in the body of the uterus with conventional nonsexed semen (NSS body). Semen of three buffalo bulls was sexed by a collaborating company and commercially distributed in 0.25 mL straws with a total of 2 million sexed spermatozoa. Pregnancy rates were first assessed at Day 28 following AI, and rechecked at Day 45 by ultrasound. Pregnancy rates were nonsignificantly different between animals inseminated with sexed or nonsexed semen: 80/206 (38.8%) and 40/106 (37.7%), respectively (P = 0.85). However, site of insemination of sexed semen affected pregnancy rate significantly as higher pregnancy rates were obtained when sexed semen was deposited into the body rather than the horn of the uterus: 46/101 (45.5%) and 34/105 (32.3%), respectively (P = 0.05). In conclusion, the use of sexed semen in buffalo heifers gave satisfactory and similar pregnancy rates when compared with conventional nonsexed semen. Deposition of sexed semen into the body of the uterus, however, increased pregnancy rates significantly.  相似文献   

16.
Early experiments suggested that scrapie transmission via sheep embryos was a possibility, and gave rise to much controversy. However, when account is taken of the complex genetic effects on ovine susceptibility to scrapie, and of the several different scrapie strains with different clinical and pathological effects, the overall conclusion now is that transmission of classical scrapie by embryo transfer is very unlikely if appropriate precautions are taken. Recent embryo transfer studies have confirmed this. Other studies in sheep have shown that from about the middle of pregnancy the placental trophoblast is liable to scrapie infection in genetically susceptible ewes if the fetus is also susceptible. Since the contrary is also true, use of resistant ewes as embryo recipients could add to the safety of the embryo transfer, at least for classical scrapie. There has been little recent research on scrapie transmission via semen in sheep, and, with hindsight, the early studies, though negative, were inadequate. There is scant information on scrapie transfer via goat semen or embryos, although one study did find that bovine spongiform encephalopathy (BSE) was not transmitted via goat embryos. In cattle it has been shown that, if appropriate precautions are taken, the risks of transmitting BSE via semen and in vivo-derived embryos are negligible, and this conclusion has gained worldwide acceptance. Research on TSE transmission via reproductive technologies in deer has not yet been done, but information on the pathogenesis and epidemiology of chronic wasting disease (CWD) of deer, and on transmission risks in other species, provides optimism that transmission of CWD via semen and embryos of deer is unlikely. The presence of TSE infectivity in blood and various other tissues of infected animals, particularly sheep, gives rise to concerns that certain biological products currently used in reproductive technologies, e.g. pituitary gonadotrophins for superovulation, and certain tissue and blood products used in semen and embryo transfer media, could carry TSE infectivity. Instruments such as laparoscopes used for insemination, and for collection and transfer of embryos, especially in small ruminants, are also a concern because effective decontamination can be very difficult.  相似文献   

17.
Cloning by nuclear transfer has many potential applications in a dairy cattle breeding program. It can be used to increase the accuracy of selection and therefore the rate of genetic progress, to speed up the dissemination of the genes from animals of exceptionally high genetic merit to the commercial population, and to reproduce transgenic animals. Today, however, the main limitation of the use of cloning besides governmental regulations is its low success rate and consequently the high cost to produce an animal ready for reproduction. As a result cloning is mostly limited to the reproduction of animals of very high genetic merit or that carry genes of specific interest. Examples of this are top-ranked bulls which do not produce enough semen for the demand due to various reasons. A strategy that could be used by artificial insemination (AI) centers would be to create a bank of somatic cells for every bull entering AI facilities long before they are placed on the young sire proving program. The other use of cloning is to assist in the selection and reproduction of bull dams. Marker assisted selection (MAS) can substantially enhance the accuracy of selection for embryos or young animals without comprehensive performance records, and therefore can greatly increase the value of cloning such embryos or young animals.  相似文献   

18.
19.
在过去34年的圈养大熊猫种群保护工作中,我们成功建立了全球最大的大熊猫精子库,目前已保存50只大熊猫个体总计7 000余支细管冷冻精液(冻精)。冷冻精液一方面可以使物种的遗传资源得到长久保存,另一方面可以通过人工授精的方式促进种群繁育。但是,圈养大熊猫冷冻精液对其种群遗传多样性的作用尚未有明确报道。本研究首先根据成都大熊猫繁育研究基地2000—2014年冷冻精液人工授精数据,对比分析了冻精人工授精个体和圈养种群的遗传多样性。结果显示,冻精人工授精个体遗传多样性均高于同年圈养种群的平均遗传多样性,表明在繁殖年份中冻精人工授精可以显著提高圈养大熊猫种群的遗传多样性。统计精子库中所有冻精个体的平均血缘系数并与圈养种群进行对比分析,探究冷冻精液对圈养种群遗传多样性的潜在作用。结果显示,精子库中有21只已死亡个体的精液,其中有66.67%的个体平均血缘系数低于圈养种群;有14只20岁以上个体的精液,其中有50.00%的个体平均血缘系数低于圈养种群;另有15只20岁以下个体的精液,其中有53.33%的个体平均血缘系数低于圈养种群,表明冷冻精液对圈养种群遗传多样性的保护具有重要价值。综上所述,冷冻精液不但有效保存了大熊猫遗传资源,而且在保护圈养种群遗传多样性方面具有积极的促进作用。  相似文献   

20.
This review describes the use of modern reproductive biotechnologies or assisted reproductive techniques (ART) including artificial insemination, embryo transfer/sexing, in vitro fertilization, gamete/embryo micromanipulation, semen sexing, genome resource banking, and somatic cell nuclear transfer (cloning) in conservation programs for endangered mammalian species. Such biotechnologies allow more offspring to be obtained from selected parents to ensure genetic diversity and may reduce the interval between generations. However, the application of reproductive biotechnologies for endangered free-living mammals is rarer than for endangered domestic breeds. Progress in ART for non-domestic species will continue at a slow pace due to limited resources, but also because the management and conservation of endangered species is biologically quite complex. In practice, current reproductive biotechnologies are species-specific or inefficient for many endangered animals because of insufficient knowledge on basic reproduction like estrous cycle, seasonality, structural anatomy, gamete physiology and site for semen deposition or embryo transfer of non-domestic species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号