首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
New data are reported, and literature data compiled, for species richness in 0.1 ha plots in Australian vegetation. We conclude that on present evidence the same vegetation types are rich, and the same types poor, at a 0.1 ha scale, in Australia as elsewhere. Tropical rainforest averages 140 species per 0.1 ha in permanently humid types. Temperate sclerophyll shrub-dominated types on low-nutrient soils are generally in the range 50–100 species, with open woodlands somewhat richer than scrublands. Warm semi-desert shrublands can have 50–80 species, counting ephemerals both of summer and of winter. Temperate closed forests generally have fewer than 50 species per 0.1 ha. For none of these types is there clear evidence that they are richer or poorer in species at a 0.1 ha scale than types in similar environments with similar growth-form mixes on other continents. We give data for grassy woodlands and sclerophyll scrublands in the monsoonal tropics; the fragments of data on such types available from other continents suggest there may be a wide range of species richness in sub-types of this very broad grouping. Generally, available data do not support the idea that floristic evolutionary history is a strong influence on the species richness of vegetation at the 0.1 ha scale, relative to the influence of the present-day climatic and soil environment.The National Parks and Wildlife Service of N.S.W. gave permission to work in National Parks. Getty Pty. Ltd., Central Coast Mining N.L., Mount Isa Mines Ltd. and Denison Australia Pty. Ltd. supported work on their mining leases. The staff of Fowlers Gap Research Station were always hospitable. The Herbarium Australiense and the herbaria of N.S.W., Sydney University, the Northern Territory and Queensland helped with identifications. We thank D. J. Parsons, C. Zammit, R. K. Peet, W. E. Westman and R. H. Whittaker for comments and unpublished data. We wish particularly to record our debt to the late Professor Whittaker, who encouraged this work.  相似文献   

2.
A survey of 20 km2 of species-rich kwongan (sclerophyllous shrubland or sandplain vegetation) is reported, A total of 429 vascular plant species were found, of which 338 were recorded at the eighty-seven systematically located 0.1 ha releves, Five vegetation units were defined following analysis of the site floristics data. Small but distinctive suites of species (totalling 26% of recorded species) characterized a gradient in soils from the sands and gravels of the lateritic uplands, through the deep sands of the dune sequence, to the clays of the winter-wet depressions. However the soils-related axis in the ordinations accounted for only ca. 6% of the variability in the data, indicating the complexity of the vegetation environment interactions. Species richness was greatest in a zone of apparent overlap between the lateritic group of species and those of the deep sand areas. The winter-wet areas were poorest in species. The distributions of the floristically defined vegetation units did not closely parallel those of physiognomic units defined by interpretation of air photos. Structural dominance was negligible in all but the winter-wet areas and the few dominants appeared poorly correlated with other species and with the physical environment. Comparisons are made with areas of similar vegetation elsewhere in Australia and in South Africa.  相似文献   

3.
Forty-four species of terrestrial reptiles and eight species of frogs were recorded from 60 continental islands of the Wessel and English Company groups off northeastern Arnhem Land, Northern Territory. Two gecko species, Oedura rhombifer and Heteronotia binoei, were present on the most islands (34 and 31, respectively), and occurred on islands < 5 ha. In contrast, agamids, pygopodids and varanids were absent from islands < 18 ha, and snakes and frogs were not reported from islands < 240 ha. Island size explained 82% of the variation in species richness for terrestrial reptiles, and 84% of that for lizards. The relationship was less good for (i) groups with generally uncommon species (notably snakes), for which sampling effort explained more variation, and (ii) groups with species which had relatively specific habitat requirements (notably frogs), for which island size and isolation factors were not especially relevant. For most taxonomic groups considered, isolation factors added little to the relationship between species richness and island size. Across all reptiles, larger species were found on fewer islands, and had larger island size thresholds. This relationship broke down with analysis restricted to the single most species-rich family, Scincidae. Only 6 of the 20 most frequently recorded species showed significant variation in abundance among 8 vegetation types sampled by 226 quadrats across 40 islands. The number of species (alpha-diversity) and total abundance of herpetofauna within quadrats was generally unrelated to island size; however, (with analysis restricted to islands on which they occurred) six individual species were significantly more abundant on smaller islands than on larger islands, with no species showing the opposite pattern. The islands’ herpetofauna is largely a relatively depauperate subset of that of the far more complex sandstone massif and escarpment of western Arnhem Land, especially missing species associated with rugged sandstone gorges, riparian areas, open forests, swamps and clay soils. Patterns in species richness and composition are explained by greater range of environments on larger islands allowing better retention of species since isolation and/or richer tallies at the time of isolation. The evidence suggests that there has been relatively little colonization, although at least two gecko species and one varanid may have moved reasonably frequently.  相似文献   

4.
Abstract. A regional vegetation survey of the temperate grassy woodlands (temperate savanna) in Australia was designed to assess the effects of clearing and grazing on the composition of vegetation remnants and the adjacent pasture matrix. Vegetation was sampled across a range of habitats using 77 0.1024‐ha quadrats; the relative abundance of species was recorded. Classification analysis clustered the sites into three main groups that corresponded to intensity of grazing/clearing followed by groups based on underlying lithology (basalt, metasediment, granites). Using Canonical Correspondence Analysis, exogenous disturbance and environmental variables were related to the relative abundance of species; grazing intensity had the highest eigenvalue (0.27) followed by tree canopy cover (0.25), lithology (0.18), altitude (0.17) and slope (0.10). Based on two‐dimensional ordination scores, six species response groups were defined relating to intensity of pastoralism and nutrient status of the landscape. Abundance and dominance of native shrubs, sub‐shrubs, twiners and geophytes were strongly associated with areas of less‐intense pastoralism on low‐nutrient soils. The strongest effects on species richness were grazing followed by canopy cover. Continuously grazed sites had lower native species richness across all growth forms except native grasses. There was no indication that intermediate grazing intensities enhanced forb richness as a result of competitive release. Species richness for all native plants was lowest where trees were absent especially under grazed conditions. Canopy cover in ungrazed sites appeared to promote the co‐existence of shrubs with the herbaceous layer. Predicted declines in forb richness in treeless, ungrazed, sites were not detected. The lack of a disturbance‐mediated enhancement of the herbaceous layer was attributed to habitat heterogeneity at 0.1 ha sampling scale.  相似文献   

5.
Tree species richness changes along elevation gradients in response to underlying environmental conditions. Our hypothesis was that richness is associated with climatic variables and decreases with elevation. The objective was to identify trends in species, genus and family richness, diversity and vegetation structure in relation to climate variables along an elevation gradient with successive types of forest in Veracruz, Mexico. Trees were identified and measured in 0.1 ha at 15 sites located from 140 to 4000 m a.s.l. Generalized linear models were used to fit richness, diversity, basal area and density as a function of elevation; the best model was selected using Akaike’s Information Criterion. Multivariate analyses were used to explore climatic variables associated to composition of groups of sites along the gradient. Along the entire elevation gradient, species, genus and family richness decreased unimodally, and diversity decreased monotonically. Richness was positively correlated with temperature but not with precipitation. Basal area increased monotonically and highest basal area was associated with high humidity and certain tree species (Quercus and Abies). Ordinations indicated three groups of sites: lower elevation dry forest associated with temperature seasonality, mid-elevation cloud forest associated with precipitation-related variables, and coniferous forest at the top of the gradient associated with elevation. Our study shows that different plant communities are associated with certain climatic conditions and harbour different tree species, genera and families. The results support the hypothesis that species richness is associated with climate, and decreases with elevation.  相似文献   

6.
Kwongan is an important vegetation type in southwestern Australia. It occurs in small patches throughout Tutanning Nature Reserve. Eleven patches, totalling 64 ha, were found to contain 315 vascular plant species: over half the total species recorded for the whole reserve. The patches were floristically heterotoneous (cf. Westhoff & van der Maarel 1973) but could be grouped according to three major soil types. The richest kwongan was on pockets of shallow duplex soil occurring midway down the landscape profile. Species richness appears to decline only slightly with increasing time since fire. Presence of emergent Banksia attenuata at one site did not influence the overall speciesrichness of that area.  相似文献   

7.
Aim To examine butterfly species richness gradients in seven regions/countries and to quantify geographic mean root distance (MRD) patterns. My primary goal is to determine the extent to which an explanation for butterfly richness patterns based on tropical niche conservatism and the evolution of cold tolerance, proposed for the fauna of Canada and the USA, applies to other parts of the world. Location USA/Canada, Mexico, Europe/NW Africa, Transbaikal Siberia, Chile, South Africa and Australia. Methods Digitized range maps for butterfly species in each region were used to map richness patterns in summer (for all areas) and winter (for USA/Canada, Europe/NW Africa and Australia). A phylogeny resolved to subfamily was used to map the geographic MRD patterns. Regression trees and general linear models examined climatic and vegetation correlates of species richness and MRD within and among regions. Results Various combinations of climate and vegetation were strong predictors of species richness gradients within regions, but unresolved ‘regional’ factors contributed to the multiregional pattern. Regionally based differences in phylogenetic structure also exist, but MRD is negatively correlated with temperature both within and across areas. MRD patterns consistent with tropical niche conservatism occur in most areas. With a possible partial exception of Mexico, faunas in cold climates and in mountains are more derived than faunas in lowlands and tropical/subtropical climates. In USA/Canada, Europe and Australia, winter faunas are more derived than summer faunas. Main conclusions The phylogenetic pattern previously found in the USA and Canada is widespread in both the Northern and Southern Hemispheres, and niche conservatism and the evolution of cold tolerance is the likely explanation for the development of the global butterfly species richness gradient over evolutionary time. Contemporary climate also influences species richness patterns but is unlikely to be a complete explanation globally. The importance of climate is also manifested in the seasonal loss of more basal butterfly elements outside the tropics in winter.  相似文献   

8.
Basidiomycete communities were profiled using terminal RFLP (TRFLP) and amplified ribosomal DNA restriction analysis (ARDRA) approaches at seven field sites under differing land use in northern-central New South Wales (NSW), Australia. TRFLP data indicated greater basidiomycete species richness at sites with natural vegetation. Sixty-seven basidiomycete ARDRA-types were detected. Various putatively ectomycorrhizal fungi were detected at all sites with native vegetation. Most ectomycorrhizal taxa had affinities to the genus Tomentella, while two Pisolithus taxa and putatively ectomycorrhizal Cantharellales taxa were also detected. Although soils under woodland or grassland communities supported a range of putatively saprotrophic taxa, only members of the Ceratobasidiales were detected in soils under agricultural land use. This study is the first investigation of fungal communities in soils of northern-central NSW, Australia.  相似文献   

9.
Abstract The patterns in total species richness and in the richness of the dominant growth-forms of vegetation communities of coastal sclerophyll and mesophyll vegetation in eastern Australia are examined. Plant species richness data were obtained from two 500 m2 quadrats from 50 sites within a single geographical region north of Sydney, New South Wales. Concentrically nested subquadrats within each quadrat enabled the determination of species-area relationships for total species richness and its components. Three growth-forms were examined (trees, shrubs and ground cover) and patterns in the richness of these components were compared to those exhibited by total species richness. Total species richness was higher in sclerophyll communities on Hawkesbury Sandstone soils than in adjacent mesophyll communities on Narrabeen shales and sandstones. Significant patterns in total species richness within the two soil types were also found. Shrub and ground cover species richness showed strong correlations with total species richness, with higher richness in the sclerophyll communities. However, tree species richness contributed little to the patterns in total species richness. The results of this study suggest that differential patterns in the components of total species richness must be taken into account for effective modelling of natural areas based on species richness and diversity parameters.  相似文献   

10.
Aim Many high‐latitude floras contain more calcicole than calcifuge vascular plant species. The species pool hypothesis explains this pattern through an historical abundance of high‐pH soils in the Pleistocene and an associated opportunity for the evolutionary accumulation of calcicoles. To obtain insights into the history of calcicole/calcifuge patterns, we studied species richness–pH–climate relationships across a climatic gradient, which included cool and dry landscapes resembling the Pleistocene environments of northern Eurasia. Location Western Sayan Mountains, southern Siberia. Methods Vegetation and environmental variables were sampled at steppe, forest and tundra sites varying in climate and soil pH, which ranged from 3.7 to 8.6. Species richness was related to pH and other variables using linear models and regression trees. Results Species richness is higher in areas with warmer winters and at medium altitudes that are warmer than the mountains and wetter than the lowlands. In treeless vegetation, the species richness–pH relationship is unimodal. In tundra vegetation, which occurs on low‐pH soils, richness increases with pH, but it decreases in steppes, which have high‐pH soils. In forests, where soils are more acidic than in the open landscape, the species richness–pH relationship is monotonic positive. Most species occur on soils with a pH of 6–7. Main conclusions Soil pH in continental southern Siberia is strongly negatively correlated with precipitation, and species richness is determined by the opposite effects of these two variables. Species richness increases with pH until the soil is very dry. In dry soils, pH is high but species richness decreases due to drought stress. Thus, the species richness–pH relationship is unimodal in treeless vegetation. Trees do not grow on the driest soils, which results in a positive species richness–pH relationship in forests. If modern species richness resulted mainly from the species pool effects, it would suggest that historically common habitats had moderate precipitation and slightly acidic to neutral soils.  相似文献   

11.
Abstract The impacts of prescribed burning and timber harvesting on species diversity have been the subject of considerable debate. The temporal and spatial scale of these disturbances often presents major limitations to many studies. Here we present the medium‐term results of a planned long‐term study examining the impacts of logging and prescribed burning on the understorey floristic richness in shrubby dry sclerophyll forest in the south‐east of New South Wales, Australia. Generalized estimating equations were used to model the effect of environmental factors and disturbance variables on species richness at the coupe (~30 ha) and plot (~0.01 ha) scale. At the plot scale, fire effects on separate components of the vegetation were broadly consistent with other studies, with frequent fire resulting in a relative increase of species richness for species less than 1 m in height and a decline of larger species taller than this height. At the coupe scale, there was no decline in richness of larger shrub species, possibly owing to the spatial heterogeneity of fire frequency at this scale. Logging resulted in significantly greater species richness in the shrub layer, but had no significant effect on species richness in the ground layer. During the study period, there was a general decline in plant species richness at both coupe and plot scales which occurred independently of imposed management regimes. This is thought to be related to a natural succession following wildfire, and may be due to the absence of high‐intensity fire in the study area since 1973, or to an effect related to season of burning.  相似文献   

12.
Seed dispersal and early revegetation processes were studied in an area devastated by a debris avalanche that occurred on volcano Ontake, Central Japan in 1984. The avalanche was initiated by a volcanic earthquake, and a 3.4 x 107 m3 land mass destroyed the vegetation over 700 ha. The revegetation of the first five years was slow in the area of higher elevation (subalpine area). Both the speed of revegetation and the species richness of trapped seeds varied with the elevation. The post-disturbance vegetation on the deposit with surface soil or plant fragments was richer in species than that without any surface soil. Almost all of the seeds caught by sticky traps and most of the species with frequent occurrence in the vegetation after disturbance were wind dispersed. Wind dispersal was especially important on the deposit without surface soil or plant fragments.  相似文献   

13.
Predictable geographic patterns in the distribution of species richness, especially the latitudinal gradient, are intriguing because they suggest that if we knew what the controlling factors were we could predict species richness where empirical data is lacking (e.g. tropics). Based on analyses of the macro-scale distribution of woody plant species richness in Southern Africa, one controlling factor appears to be climate-based water-energy dynamics. Using the regression models of climate's relationship to species richness in Southern Africa, I was able to describe an Interim General Model (IGM) and to predict first-order macro-scale geographic variations in woody plant species richness for the continent of Africa, as well as elsewhere in the world—exemplified using South America, the United States and China.
In all cases, the geographic pattern of variation in species richness is in accord with geographic variations in vegetation (visual comparison with vegetation maps) and net primary productivity. What validation was possible (Africa and U.S.A.) suggests that the IGM provides 'reasonable' estimates for actual woody plant species richness where species richness is in relative equilibrium with climate. Areas of over- or under-prediction support the contention of earlier workers that edaphic, topographic, historical, and dispersal factors need to be considered in a more complete explanation for spatio-temporal variations in species richness.
In addition to providing a means for systematically estimating woody plant species richness where present-day empirical data is lacking, the Interim General Model may prove useful for modelling the effects of climate change (past/future) on species richness (and, by association, the vegetation).  相似文献   

14.
Abstract. The probable causes of spatial variation in the diversity of plant communities on a global and local scale have been widely investigated, but the regional scale has received little attention. It remains unclear how disturbance affects diversity in wetlands andriparian vegetation. This study examines the hypothesis that regional variation in the richness of riparian wetlands is related to variation in macro-environment and flood potential. Vascular plant species richness was sampled in 0.1 ha plots at 115 riparian sites scattered over a 300 km length of the western slope of the Rocky Mountains in western Colorado, USA. The relationship between macro-environmental variables (e.g. drainage basin area), disturbance indicators, and species richness was analyzed using correlation analysis and multiple regression analysis. Total richness varied between 20 and 87 species (average 50.6) per 0.1 ha, and was highest in subalpine riparian forests from 2600–3650 m a.s.l. (57.8 species / 0.1 ha). Tree and shrub richness were highest in lower elevation, larger drainage basins, forb and graminoid richness were highest in higher elevation, smaller drainage basins. These opposing trends resulted in no net trend in total richness with elevation. Regression models for total richness were poor, suggesting that other variables must be important. The intermediate disturbance hypothesis and other single-factor hypotheses are not supported as explanations of the regional pattern of variation in richness.  相似文献   

15.
Determining drivers of species richness is recognised as highly complex, involving many synergies and interactions. We examine the utility of newly available remote sensing representations of vegetation productivity and vegetation structure to examine drivers of species richness at continental and regional scales. We related richness estimates derived from stacked species distribution models for birds, mammals, amphibians, and reptiles to estimates of actual and potential evapotranspiration (AET and PET), forest structure, and forest productivity across Australia as a whole as well as by bioclimatic zones. We used structural equation modeling to partition correlations between climate energy and vegetation attributes and their subsequent associations with species richness. Continentally, vertebrate richness patterns were strongly related to patterns of energy availability. Richness of amphibians, mammals, and birds were positively associated with AET. However, reptile richness was most strongly associated with PET. Regionally, forest structure and productivity associations with bird, mammal, and amphibian richness were strongest. Again, reptile richness associated most strongly with PET. Our results suggest that a hierarchy of drivers of broad‐scale vertebrate richness patterns exist (reptiles excluded): 1) climate energy is most important at the continental scale; next, 2) vegetation productivity and vegetation structure are most important at the regional scale; except 3) at low extremes of climate energy when energy becomes limiting.  相似文献   

16.
Understanding influences of environmental change on biodiversity requires consideration of more than just species richness. Here we present a novel framework for understanding possible changes in species' abundance structures within communities under climate change. We demonstrate this using comprehensive survey and environmental data from 1748 woody plant communities across southeast Queensland, Australia, to model rank‐abundance distributions (RADs) under current and future climates. Under current conditions, the models predicted RADs consistent with the region's dominant vegetation types. We demonstrate that under a business as usual climate scenario, total abundance and richness may decline in subtropical rainforest and shrubby heath, and increase in dry sclerophyll forests. Despite these opposing trends, we predicted evenness in the distribution of abundances between species to increase in all vegetation types. By assessing the information rich, multidimensional RAD, we show that climate‐driven changes to community abundance structures will likely vary depending on the current composition and environmental context.  相似文献   

17.
Riparian habitats in arid landscapes are recognised for their structurally diverse vegetation and diverse bird species assemblages. In the extensive semi-arid and arid centre of Australia, riparian woodland habitats are impacted by pastoral land-use which may negatively influence vegetation structure and avian species composition. However, pastoralism has promoted the establishment of artificial water bodies, so that additional riparian vegetation may occur in the landscape. In this study, we surveyed the importance of different water regimes (i.e. artificial lakes, natural waterholes, desert sites) together with their associated vegetation on avian species richness in north-western New South Wales, Australia. Our results show that bird species richness was highest at water locations, in particular at artificial lakes. Avian species richness was negatively associated with distance to water bodies, both in desert vegetation types and in the riparian vegetation type along dry creeks. Moreover, riparian habitats supported larger avian assemblages and especially those of sedentary bird species compared to the surrounding shrub-steppe landscape. This indicates that artificial water bodies may be of significance for arid zone bird species and might gain in importance with changing water availabilities due to climatic changes.  相似文献   

18.
Abstract. Soil seed bank and floristic diversity were studied in a forest of Quercus suber, a forest of Quercus canariensis and a grassland, forming a vegetation mosaic in Los Alcornocales Natural Park, southern Spain. The soil seed bank was estimated by the germination technique. In each community patch, diversity, woody species cover and herbaceous species frequency was measured. Three biodiversity components – species richness, endemism and taxonomic singularity – were considered in the vegetation and the seed bank. Forest patches had a soil seed bank of ca. 11 200–14 100 seed.m?2 and their composition had low resemblance to (epigeal) vegetation. The grassland patch had a more dense seed bank (ca. 31 800 seed.m?2) and a higher index of similarity with vegetation, compared with the forests nearby. The complete forest diversity was 71–78 species on 0.1 ha, including 12–15 species found only in the seed bank; the grassland species richness was higher (113 species on 0.1 ha). We discuss the role of soil seed banks in the vegetation dynamics and in the complete plant biodiversity of the mosaic landscape studied.  相似文献   

19.
AimTo examine calcicole and calcifuge plant strategies, as well as nutrient‐acquisition strategies, as drivers of the distribution of species in response to edaphic factors, and the degree to which these strategies may act as filters to species establishment in ecological restoration on heavily altered or reconstructed substrates.LocationAn 82,000‐ha area within a major mining province in the Mid‐West region of Western Australia, harboring vegetation communities ranging from species‐poor halophytic scrub on saline flats to dense biodiverse shrubland on the skeletal soils of ancient Banded Ironstone Formations (BIF).MethodsUnivariate and multivariate analyses were employed to examine how variation in soil chemistry and landscape position (undulating plains, slopes, and BIF crests and ridges) influenced patterns of floristic diversity, calcifuge plant strategies, and nutrient‐acquisition strategies in 538 plant species from 830 relevés.ResultsLandscape position was the strongest driver of species richness and vegetation functional composition. Soils became increasingly acidic and P‐impoverished along an increasing elevational gradient. Vegetation from different landscape positions was not compositionally dissimilar, but vegetation of BIF crests and ridges was up to twice as biodiverse as vegetation from adjacent lower‐relief areas and harbored higher proportions of calcifuge species and species with mycorrhizal associations.Main conclusionsTopographic and edaphic complexity of BIF landforms in an otherwise relatively homogenous landscape has likely facilitated species accumulation over long time periods. They represent musea of regional floristic biodiversity, excluding only species that cannot establish or are inferior competitors in heavily weathered, acidic, skeletal, and nutrient‐impoverished soils. Plant strategies likely represent a major filter in establishing biodiverse, representative vegetation on postmining landforms in geologically ancient regions.  相似文献   

20.
To advance our understanding of the processes that govern the assembly of palm communities and the local coexistence of numerous palm species, we here synthesize available information in the literature on species diversity and growth-form composition in palm communities across the Americas. American palm communities surveyed had 4–48 (median 16) species in study plots covering 0.09–7.2 ha. Climate, soils, hydrology, and topography are the main factors determining palm community species richness. Tropical lowland terra firme rain forests are the most species-rich whereas forests that are inundated or grow on sandy soils or in areas with seasonal climate have much fewer species. Palm communities in the central-western Amazon and in Central America are significantly richer than the average region and those in the Caribbean significantly poorer in species. As for branching, the 789 species of tropical American palms belong to Corner’s model (solitary, 268 species, 33%), Tomlinsons model (cespitose, 521 species, 66%) and Schoute’s model (dichotomous branching, three species, <1%). We assigned the species to eight different growth forms: (i) Large tall-stemmed Palms (102 spp), (ii) Large-leaved medium–short-stemmed Palms (31 spp), (iii) Medium-sized Palms (95 spp), (iv) Medium/Small Palms with Stout Stem (42 spp), (v) Small Palms (423 spp), (vi) Large acaulescent Palms (28 spp), (vii) Small acaulescent Palms (56 spp), and (viii) Climbing Palms (12 spp). The eight growth forms are differently represented in the palm communities, and the categories Small Palms and Large tall-stemmed Palms dominate the communities both in terms of species richness and in number of individuals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号