首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Mesembryanthemum crystallinum plants were irrigated with 400 mol m?3 NaCl to induce CAM and levels of leaf starch, and activities of starch-degrading enzymes were measured. During Crassulacean acid metabolism (CAM) induction, daily starch turnover gradually became more pronounced and was three- to four-fold greater than in leaves of C3 plants after 3 weeks. Activities of α- and β-amylase, D-enzyme and starch phosphorylase all increased 10- to 20-fold within 3 weeks of the start of salt treatment. Activities of α- and β-amylase increased more than fourfold within the first 24 h of salt treatment, which is the fastest increase in enzyme activities so far measured during the induction of CAM with salt solution in intact plants of this species. Most enzyme activities were partially chloroplastic; however, the principal starch-degrading activity was constituted by an extra-chloroplastic β-amylase. CAM starch-phosphorylase activity, which was mainly chloroplastic, exhibited a two- to three-fold diurnal change in parallel with starch content. CAM induction in M. crystallinum is clearly associated with greater starch turnover and enhanced starch-degrading enzyme activities, which as catalysts of the initial reaction to release carbon for synthesis of phosphoenolpyruvate (PEP) appear highly significant for the functioning of the CAM pathway. The diurnal rhythm of phosphorylase activity may be of particular significance.  相似文献   

5.
Selective gene expression allows the halophyte Mesembryanthemum crystallinum to survive a salt stress. To broaden our understanding of the environmental cues initiating diverse stress responses in this higher plant, unstressed and 0.4 M NaCl‐stressed plants were compared to plants treated with several concentrations of copper (CuSO4), an increasingly relevant environmental heavy metal pollutant. Comparisons of control and copper‐stressed plants included germination, chlorophyll content, accumulation of proline, heat shock protein (HSP) 60 and a Crassulacean acid metabolism (CAM)‐specific marker enzyme, phospho enol pyruvate carboxylase (PEPCase). In germination and whole plant tests, M. crystallinum was significantly more tolerant to copper than Arabidopsis thaliana. Mature M. crystallinum plants stressed with 50 ppm CuSO4 for 48 h became dehydrated. These plants produced a 4‐fold increase in proline concentration and accumulated both the CAM‐specific PEPCase and HSP 60 compared to controls. Higher levels of copper stress resulted in a 10‐fold increase in leaf proline content, 10‐fold HSP 60 accumulation but no detectable PEPCase protein compared to unstressed controls. HSP 60 did not accumulate under NaCl stress. Concurrent with copper‐induced genetic responses to stress, copper was accumulated and concentrated in leaves (3 500 ppm). Together, these results suggest that this halophyte copes with copper metal exposure through distinct genetic mechanisms.  相似文献   

6.
7.
8.
9.
Mesembryanthemum crystallinum plants have been regenerated via organogenesis from hypocotyl, cotyledonary node, and leaf expiants with varying frequencies. The highest regeneration frequencies were obtained from either hypocotyls (23–34%) or cotyledonary nodes (21–41%). Leaf expiants yielded very poor regeneration frequencies (0–11%). Expiants were placed on Murashige and Skoog (MS) media supplemented with 3% sucrose, 0.8% bacto-agar and either, 10.8×10–6M NAA and 8.8×10–6M BA (MSmsh), 1×10–5M BA and 1×10–6M IAA, (MS4) or 1×10–6M BA and 1×10–6M IAA (MS5). Shoot formation frequencies were greater on MS4 and MS5 and lower on MSmsh, however, overall differences of regeneration frequency among media tested were not statistically significant. Regenerated plantlets were rooted on MS medium without growth regulators. Mature, regenerated plants were fertile and exhibited DNA content and ploidy profiles that were identical to wild type plants.Abbreviations MS Murashige and Skoog media - CAM Crassulacean acid metabolism - kbp kilobase pairs - NAA 1-naphthaleneacetic acid - BA 6-benzyladenine - IAA indole-3-acetic acid  相似文献   

10.
Understanding the molecular mechanisms that convey salt tolerance in plants is a crucial issue for increasing crop yield. The ice plant (Mesembryanthemum crystallinum) is a halophyte that is capable of growing under high salt conditions. For example, the roots of ice plant seedlings continue to grow in 140 mM NaCl, a salt concentration that completely inhibits Arabidopsis thaliana root growth. Identifying the molecular mechanisms responsible for this high level of salt tolerance in a halophyte has the potential of revealing tolerance mechanisms that have been evolutionarily successful. In the present study, deep sequencing (RNAseq) was used to examine gene expression in ice plant roots treated with various concentrations of NaCl. Sequencing resulted in the identification of 53,516 contigs, 10,818 of which were orthologs of Arabidopsis genes. In addition to the expression analysis, a web-based ice plant database was constructed that allows broad public access to the data. The results obtained from an analysis of the RNAseq data were confirmed by RT-qPCR. Novel patterns of gene expression in response to high salinity within 24 hours were identified in the ice plant when the RNAseq data from the ice plant was compared to gene expression data obtained from Arabidopsis plants exposed to high salt. Although ABA responsive genes and a sodium transporter protein (HKT1), are up-regulated and down-regulated respectively in both Arabidopsis and the ice plant; peroxidase genes exhibit opposite responses. The results of this study provide an important first step towards analyzing environmental tolerance mechanisms in a non-model organism and provide a useful dataset for predicting novel gene functions.  相似文献   

11.
H E Yen  G E Edwards    H D Grimes 《Plant physiology》1994,105(4):1179-1187
A concanavalin A (Con A)-binding polypeptide with a molecular mass of 24 kD (termed "SRgp24") was associated with the intercellular space of Mesembryanthemum crystallinum L. callus. When callus was grown in medium containing between 0 and 100 mM NaCl, SRgp24 was detected by Con A binding. Increasing the NaCl concentration to 200 mM caused a reduction in the amount of SRgp24 within 3 d, and returning the callus to medium without salt resulted in an accumulation of SRgp24. Immunoblot analysis showed that appreciable amounts of SRgp24 accumulated in the leaves when plants were grown under sodium-limiting conditions. Unlike most of the cell-wall Con A-binding proteins in M. crystallinum callus, the carbohydrate moiety of SRgp24 was resistant to endoglycosidase H digestion. After purification of SRgp24, the N terminus was sequenced and found to share 55 to 60% identity with the N terminus of osmotin, a group 5 pathogenesis-related protein (PR-5) that accumulates in salt-adapted tobacco cell suspension. Immunocytochemical assays, with affinity-purified antibodies to SRgp24, indicated that SRgp24 preferentially accumulated in the cell-wall region. We conclude that SRgp24 is a salt-responsive glycoprotein related to the PR-5 family in M. crystallinum.  相似文献   

12.
Thomas JC  Bohnert HJ 《Plant physiology》1993,103(4):1299-1304
We selected indicators of four different metabolic processes (Crassulacean acid metabolism [CAM], amino acid and nitrogen mobilization metabolism, osmoprotection, and plant defense mechanisms) to study the relationship between salt-stress-mediated and plant growth regulator (PGR)-induced responses in Mesembryanthemum crystallinum (ice plant). Nacl and PGRs (cytokinin and abscisic acid [ABA]) are efficient elicitors of the well-studied Nacl stress responses: induction of the CAM form of phosphoenolpyruvate carboxylase, proline pinitol accumulation, and the increase of an osmotin-like protein. NaCl and cytokinin are more effective than ABA in stimulating accumulation of proline and an osmotin-like protein before the plants are committed to flowering. The results are consistent with a plant defense-induction model, in which environmental stress and PGRs are distinct signals whose subsequent effects lead to overlapping responses, the magnitude of which depends on plant developmental status.  相似文献   

13.
Upon irradiation with elevated light intensities, the ice plant (Mesembryanthemum crystallinum) accumulates a complex pattern of methylated and glycosylated flavonol conjugates in the upper epidermal layer. Identification of a flavonol methylating activity, partial purification of the enzyme, and sequencing of the corresponding peptide fragments revealed a novel S-adenosyl-l-methionine-dependent O-methyltransferase that was specific for flavonoids and caffeoyl-CoA. Cloning and functional expression of the corresponding cDNA verified that the new methyltransferase is a multifunctional 26.6-kDa Mg(2+)-dependent enzyme, which shows a significant sequence similarity to the cluster of caffeoyl coenzyme A-methylating enzymes. Functional analysis of highly homologous members from chickweed (Stellaria longipes), Arabidopsis thaliana, and tobacco (Nicotiana tabacum) demonstrated that the enzymes from the ice plant, chickweed, and A. thaliana possess a broader substrate specificity toward o-hydroquinone-like structures than previously anticipated for Mg(2+)-dependent O-methyltransferases, and are distinctly different from the tobacco enzyme. Besides caffeoyl-CoA and flavonols, a high specificity was also observed for caffeoylglucose, a compound never before reported to be methylated by any plant O-methyltransferase. Based on phylogenetic analysis of the amino acid sequence and differences in acceptor specificities among both animal and plant O-methyltransferases, we propose that the enzymes from the Centrospermae, along with the predicted gene product from A. thaliana, form a novel subclass within the caffeoyl coenzyme A-dependent O-methyltransferases, with potential divergent functions not restricted to lignin monomer biosynthesis.  相似文献   

14.
Accompanying the CAM induction of Mesembryanthemum crystallinum L. grown in high salinity there are changes in the enzymes of carbon metabolism. However, there are no changes in the electron transport activities, Chla/b ratios or in the distribution of chlorophyll amongst the various pigment-protein complexes of isolated thylakoids. Hence with CAM induction there are no changes in the photochemical apparatus of M. crystallinum thylakoids. Despite comparable amounts of chlorophylla/b-proteins of photosystem II to those found in typical C3 sun plants, both the C3 and CAM M. crystallinum chloroplasts have relatively more photosystem II, and, concommitantly, less photosystem I complex. This is consistent with greater fluorescence emission at 685 and 695 nm, and lower emission at 735 nm (measured at 77 K) than typically found for C3 plants, whether sun or shade species. Photoinhibition of isolated C3 and CAM thylakoids by white light led to comparable decreases in electron transport capacities and fluorescence emission at 77 K with photosystem II being more affected than PSI. We suggest however, that the presence of more core PSII complexes relative to PSI complexes in this CAM-inducible plant, may provide an additional strategy to mitigate photoinhibition in the short-term.  相似文献   

15.
The halophyte Mesembryanthemum crystallinum (ice plant) has been suggested as a model for salt-tolerance in higher plants. To investigate salt-induced changes in polypeptide patterns at the cellular level, a light-grown callus of M. crystallinum with substantial chlorophyll content, was established and the effect of NaCl on the composition of phenol-extracted protein was examined by SDS- and 2D-polyacrylamide gel electrophoresis (PAGE). SDS-PAGE showed the accumulation of five polypeptides with estimated molecular masses of 40, 34, 32, 29 and 14 kDa was enhanced by the addition of 200 m M NaCl to the culture media. The addition of ABA (10 μ M ) or mannitol (400 m M ) did not elicit the same degree of accumulation of these salt-specific proteins. These polypeptides were classified into two groups according to their course of induction: early responsive (40, 34, 29 kDa) and late-responsive (32, 14 kDa) proteins. In addition, two polypeptides (20, 18 kDa) were transiently accumulated during salt treatment. Further separation of soluble proteins by 2-D gel electrophoresis, either isoelectric focusing (IEF) or non-equilibrium pH-gradient electrophoresis (NEPHGE) followed by SDS-PAGE, showed more alterations in accumulation of polypeptides by NaCl than 1-D gel electrophoresis. Overall, levels of more than 30% of basic polypeptides, detected by NEPHGE/SDS-PAGE, were altered by 200 m M NaCl treatment, while only 10% of neutral and acidic polypeptides, detected by IEF/SDS-PAGE, were changed. The enhanced expression of these proteins by salt in cultured cells is most likely related to the cellular responses to salinity, and not to the mechanism of CAM induction in this facultative halophyte.  相似文献   

16.
Mechanical wounding of Mesembryanthemum crystallinum leaves in planta induced a fast decrease in stomatal conductance, which was related to accumulation of hydrogen peroxide (H(2)O(2)). Higher levels of H(2)O(2) were accompanied by an increase in total activity of superoxide dismutase (SOD) and a decrease in catalase (CAT) activity. Among SOD forms, manganese SOD (MnSOD) and copper/zinc SOD (Cu/ZnSOD) seem to be especially important sources of H(2)O(2) at early stages of wounding response. Moreover, NADP-malic enzyme (NADP-ME), one of the key enzymes of primary carbon metabolism, which is also involved in stress responses, showed a strong increase in activity in wounded leaves. All these symptoms: high accumulation of H(2)O(2), high activities of Cu/ZnSOD and NADP-ME, together with the decrease of CAT activity, were also observed in the major veins of unwounded leaves. The potential role of veinal tissues as an important source of H(2)O(2) during wounding response is discussed.  相似文献   

17.
18.
Plant epidermal trichomes are as varied in morphology as they are in function. In the halophyte Mesembryanthemum crystallinum, specialized trichomes called epidermal bladder cells (EBC) line the surface of leaves and stems, and increase dramatically in size and volume upon plant salt-treatment. These cells have been proposed to have roles in plant defense and UV protection, but primarily in sodium sequestration and as water reservoirs. To gain further understanding into the roles of EBC, a cell-type-specific proteomics approach was taken in which precision single-cell sampling of cell sap from individual EBC was combined with shotgun peptide sequencing (LC-MS/MS). Identified proteins showed diverse biological functions and cellular locations, with a high representation of proteins involved in H(+) -transport, carbohydrate metabolism, and photosynthesis. The proteome of EBC provides insight into the roles of these cells in ion and water homeostasis and raises the possibility that they are photosynthetically active and functioning in Crassulacean acid metabolism.  相似文献   

19.
The Atacama Desert is one of the most stressful environments worldwide and represents a strong barrier for the establishment of native and non-native plants. In this study, we report the establishment of a non-native annual plant through facilitation by a native endemic cactus in a relatively undisturbed coastal area in north-central Chile. Soil collected under Eulychnia acida contained more available nutrients (N, P and K), water, and soluble salts than soils collected away from E. acida. Co-occurrence analyses showed a strong positive spatial association (facilitation) between the native cactus E. acida and the non-native annual, Mesembryanthemum crystallinum. The aboveground biomass of M. crystallinum individuals was 4-fold higher under the influence of E. acida. Native halophytes occasionally shared the cactus understory with the non-native species, but dominant native shrubs and perennial herbs did not co-occur with the cactus at scales of 1 and 4 m2. All these results support facilitation of the native cactus on the non-native herb. The combination of direct and indirect positive effects could explain the assembly of the non-native annual plant in these undisturbed areas of the Atacama Desert and have major implications on M. crystallinum capacity to colonize new areas.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号