首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protein degradation in 3T3 cells and tumorigenic transformed 3T3 cells   总被引:1,自引:0,他引:1  
To study the relation of overall rates of protein degradation in the control of cell growth, we determined if transformation of fibroblasts to tumorigenicity affected their rates of degradation of short- and long-lived proteins. Rates of protein degradation were measured in nontumorigenic mouse Balb/c 3T3 fibroblasts, and in tumorigenic 3T3 cells transformed by different agents. Growing 3T3 cells, and cells transformed with Moloney sarcoma virus (MA-3T3) or Rous sarcoma virus (RS-3T3), degraded short- and long-lived proteins at similar rates. Simian virus 40 (SV-3T3)- and benzo(a)pyrene (BP-3T3)-transformed cells had slightly lower rates of degradation of both short- and long-lived proteins. Reducing the serum concentration in the culture medium from 10% to 0.5%, immediately caused about a twofold increase in the rate of degradation of long-lived proteins in 3T3 cells. Transformed lines increased their rates of degradation of long-lived proteins only by different amounts upon serum deprivation, but none of them to the same extent as did 3T3. Greater differences in the degradation rates of proteins were seen among the transformed cells than between 3T3 cells and some transformed cells. Thus, there was no consistent change in any rate of protein degradation in 3T3 cells due to transformation to tumorigenicity.  相似文献   

2.
Components of the renin-angiotensin system were studied in established cell culture lines of 3T3 and SV3T3 mouse fibroblasts. The renin content in 3T3 cells was significantly higher than in virus-transformed SV3T3 cells. With time after infection, renin decreased in Simian virus 40 transformed cells, while it increased steadily in mock-infected 3T3 cells. In contrast to renin, angiotensinase activity was higher in SV3T3 cells. Angiotensin II stimulated cell proliferation in 3T3 mouse fibroblasts and decreased their renin content in a dose-related manner. In contrast, saralasin, an angiotensin receptor antagonist, inhibited cell growth in 3T3 and SV3T3 cells and caused an increase of cellular renin concentration. The angiotensin fragments angiotensin (2-8) heptapeptide and angiotensin (4-8) pentapeptide had no effect on cell growth. A significant negative correlation was found between cell proliferation and renin levels in 3T3 and SV3T3 cells irrespective of the treatment. Our results indicate (1) that angiotensin II may be involved in cell growth regulation, (2) that a negative feedback exist between angiotensin II added and intracellular renin content, and (3) that virus infection causes a decrease in intracellular renin synthesis, while non-specific angiotensinase activity is increased under this condition.  相似文献   

3.
The growth requirements of SV40 transformed Balb/c-3T3 cells have been studied in the absence of serum. For growth in serum-free medium, the cells require (i) insulin, (ii) transferrin, and (iii) cis-unsaturated fatty acids added in combination with fatty acid free bovine serum albumin. The growth rate, saturation density, and morphology of cells grown in this serum-free medium are the same as those of cells grown in serum supplemented medium. This mixture also supports the growth of SV40 transformed Swiss-3T3 cells and SV40 transformed primary mouse embryo cells, but does not support the growth of untransformed Balb/c-3T3 cells. The addition of fibronectin to this mixture allows routine subculture, repeated passage, and indefinite propagation of SV40 transformed Balb/c-3T3 cells. Cells grown in this medium for a period of two months retain their ability to induce tumors when injected into athymic nude mice.  相似文献   

4.
D B McClure 《Cell》1983,32(3):999-1006
The colony-forming response of SV40 transformed BALB/c-3T3 cells in agarose suspension culture was studied in a serum-free medium (with insulin, transferrin and serum albumin as the only macromolecular supplements) that was optimized for colony formation of fibronectin-attached monolayer cultures. In this serum-free medium, the SV3T3 cells fail to form colonies in agarose suspension. However, they can be induced to anchorage-independent colony formation by the growth factors that are additionally required by their untransformed counterparts for proliferation in monolayer culture. The SV3T3 cells are also rendered anchorage-independent for colony formation in serum-free medium by conditioned medium from dense monolayer serum-free SV3T3 cultures. These experiments suggest that it is the cell-substrate interaction that is responsible for the growth factor autonomy of fibronectin-attached transformed cells.  相似文献   

5.
M Ernst  G Adam 《Cytobiologie》1979,18(3):450-459
Intracellular contents of potassium and of sodium are determined for 3T3 and SV 40-3T3 cells in dependence of growth density. In parallel, total cell volume and volume of intracellular water is determined for these cells suspended in physiological buffer. Intracellular potassium concentration thus evaluated for suspended 3T3 cells exhibits a sharp decrease at cellular growth densities which lead to density dependent inhibition of cell proliferation. In the case of SV 40-3T3 cells, this drop of potassium concentration with increasing cellular growth density is not observed, which correlates well with the absence of cell density dependent inhibition of cell growth in the transformed cell line. These results support the notion that processes of stimulation of quiescent 3T3 cells or of cell density dependent inhibition of their proliferation are mediated by processes including changes of potassium transport characteristics leading to increase or decrease respectively of their intracellular potassium concentration. Furthermore, these and other results suggest, that a difference between normal and transformed cells most relevant to their different proliferation behaviour might reside in different transport characteristics for potassium of the plasma membranes of these cells.  相似文献   

6.
抗多胺代谢剂──二氟甲基鸟氨酸(DFMO)作用于经含点突变的Ha-ras基因片段转染的转化细胞(HR-1细胞)引起细胞生长的抑制,其抑制率随DFMO浓度的增加而增大,此时细胞多停滞于G_1期;多胺合成的关键酶鸟氨酸脱羧酶(ODC)活性显著下降;Ha-ras癌基因mRNA及rasP~(21)蛋白的表达受到抑制;而外源性腐胺与DFMO的同时加入可防止上述一系列改变的发生,说明DFMO使HR-1细胞某些表型向亲本细胞逆转的作用是与细胞多胺生物合成的抑制直接相关。  相似文献   

7.
The objective of this study was to evaluate induction of ornithine decarboxylase (ODC), the rate-limiting enzyme in polyamine biosynthesis, and subsequent polyamine accumulation in interleukin-2 (IL-2)- and interleukin-3 (IL-3)-dependent growth. The CTLL-20 and FDC-P1 cell lines, which have been shown to be absolutely dependent on IL-2 and IL-3, respectively, were used in these studies. The CTLL-20 and FDC-P1 cells each had different temporal patterns of ODC induction following lymphokine stimulation. ODC levels increased rapidly in the FDC-P1 cells, peaking 4 hr after stimulation with IL-3. In contrast, peak ODC activity in the CTLL-20 cells occurred 18 hr following stimulation with IL-2 and reached eightfold higher levels than those observed in the FDC-P1 cells. Treatment with D,L-alpha-difluoromethylornithine X HCl X H2O (DFMO), a specific irreversible inhibitor of ODC activity, completely abrogated lymphokine-dependent ODC induction in both the CTLL-20 and FDC-P1 cell lines. Similarly, intracellular levels of the polyamines putrescine and spermidine were reduced in both cell lines following DFMO treatment. DFMO treatment reduced both IL-2- and IL-3-dependent proliferation in a dose-dependent manner. However, this inhibition could be reversed by the addition of exogenous putrescine. DFMO treatment had no effect on cell viability. Polyamine-depleted CTLL-20 and FDC-P1 cells showed decreased absorption of IL-2 and IL-3 activity, respectively. However, the addition of exogenous putrescine restored the ability of the cells to absorb the appropriate lymphokine. These data are the first to demonstrate that ODC induction and polyamine biosynthesis are required in lymphokine dependent growth.  相似文献   

8.
Polyamines are small cationic molecules required for cellular proliferation. Agmatine is a biogenic amine unique in its capacity to arrest proliferation in cell lines by depleting intracellular polyamine levels. We previously demonstrated that agmatine enters mammalian cells via the polyamine transport system. As polyamine transport is positively correlated with the rate of cellular proliferation, the current study examines the antiproliferative effects of agmatine on cells with varying proliferative kinetics. Herein, we evaluate agmatine transport, intracellular accumulation, and its effects on antizyme expression and cellular proliferation in nontransformed cell lines and their transformed variants. H-ras- and Src-transformed murine NIH/3T3 cells (Ras/3T3 and Src/3T3, respectively) that were exposed to exogenous agmatine exhibit increased uptake and intracellular accumulation relative to the parental NIH/3T3 cell line. Similar increases were obtained for human primary foreskin fibroblasts relative to a human fibrosarcoma cell line, HT1080. Agmatine increases expression of antizyme, a protein that inhibits polyamine biosynthesis and transport. Ras/3T3 and Src/3T3 cells demonstrated augmented increases in antizyme protein expression relative to NIH/3T3 in response to agmatine. All transformed cell lines were significantly more sensitive to the antiproliferative effects of agmatine than nontransformed lines. These effects were attenuated in the presence of exogenous polyamines or inhibitors of polyamine transport. In conclusion, the antiproliferative effects of agmatine preferentially target transformed cell lines due to the increased agmatine uptake exhibited by cells with short cycling times. polyamines; antizyme; ornithine decarboxylase; polyamine transport  相似文献   

9.
Murine embryonal carcinoma F9 cells can be induced to differentiate by 2-difluoromethylornithine (DFMO), an irreversible inhibitor of ornithine decarboxylase (ODC). The differentiated phenotype is similar to that of retinoic acid (RA)-treated F9 cells. In contrast to F9 cells the differentiated cells secrete plasminogen activator and express keratin intermediate filaments. Both DFMO and RA reduce ornithine decarboxylase activity, polyamine levels and inhibit cell proliferation of F9 cells. These compounds also reduce ODC, polyamine levels and proliferation of mouse BALB/c 3T6 fibroblasts. RA inhibits the induction of ODC by insulin, serum and to a lesser extent that of epidermal growth factor (EGF) and 12-O-tetradecanoylphorbol-13-acetate (TPA). The action of DFMO and RA can be distinguished by their response to putrescine. The induction of differentiation and the inhibition of cell proliferation by DFMO can be totally abolished upon the addition of putrescine, whereas the actions of RA are not affected at all. These results suggest that the inhibition of ODC and reduction of polyamines are not causal in the induction of differentiation and the inhibition of proliferation by RA.  相似文献   

10.
Influence of DL-alpha-difluoromethylornithine (DFMO) treatment on the growth kinetics, labelling index, extra- and intracellular polyamine and nucleotide concentrations was monitored in cultured P388 leukemia cells. A substantial decrease of cell proliferation was observed when the cells were continuously treated with 1-5 mM DFMO. Depletion of cellular polyamines, mostly of putrescine and spermidine, was seen with a concomitant but delayed increase of spermidine and spermine levels in the culture medium. Changes of DNA content and of labelling index of untreated and treated cells seem to indicate that DFMO arrested cells in G1/S transition. The results presented here provide additional in vitro evidence on the characteristic changes in the metabolic imbalance of ornithine in tumor cells induced by DFMO via inhibition of ornithine decarboxylase and ornithine carbamoyl transferase activities.  相似文献   

11.
Microtubules in normal and transformed BALB 3T3 cells were preserved in a stabilizing medium and measured by a [3H]colchicine-binding tubulin assay, and compared to total cellular tubulin measured under nonstabilizing conditions. Essentially no change in tubulin or microtubule content was seen with changes in cell density or with changes in cellular morphology at various stages of growth of normal or transformed cells or induced by dibutyryl cAMP treatment of transformed cells. Of five cell lines transformed by a variety of agents, four had a significantly higher total tubulin content than untransformed 3T3 cells and all of them had an increased microtubule content. None of the transformed lines had a lower fraction of tubulin recoverable as sedimentable microtubules compared to untransformed cells, and in three of them this fraction was significantly higher. These results establish that microtubules are present in transformed cells to at least the extent (if not greater) than in normal cells but that there are variations in the total amount of tubulin and microtubules as well as the fraction of the total tubulin present as microtubules which are not strictly correlated with transformation or cell morphology.  相似文献   

12.
Untransformed NIH 3T3 cells do not proliferate in media with reduced calcium, while SV40-transformed NIH 3T3 cells do. Intracellular calcium stores of untransformed cells were depleted to a higher extent than those of transformed cells under these conditions, which led to a decreased intracellular calcium transient in response to serum, compared to SV40-transformed cells. Furthermore, untransformed cells could be gradually adapted to proliferate in the low-calcium medium and, after adaptation, maintained their stores and serum response in low calcium media. Our experiments indicate that it is the ability of the cells to maintain adequate calcium stores in low calcium media that correlates with a full serum response and the ability to proliferate, rather than any differences reflected in alterations of resting calcium levels.  相似文献   

13.
We describe the first completely serum-free model culture system for comparing growth control in transformed and untransformed cells. Continuous maintenance of untransformed AKR-2B fibroblasts and chemically transformed AKR-MCA cells in the presence of serum-free medium containing epidermal growth factor (E), insulin (I), and transferrin (T) resulted in cell lines which proliferated with similar doubling times (14 h), comparable to parental lines maintained in 10% serum (16 h). The transformed MCA-SF cells and untransformed AKR-SF cells did not differ in their saturation densities in medium containing E + I + T. However, the monolayer proliferation of MCA-SF cells was significantly greater than that of the AKR-SF cells in the presence of E + T, I + T, or T alone. Both cell lines required T to proliferate in monolayer culture. [3H]-Thymidine incorporation experiments and autoradiographic analysis indicated that quiescent MCA-SF cells could reenter the cell cycle by addition of nutrients alone. The combination of E + I + T produced no additional stimulation of DNA synthesis. In contrast, individual polypeptide growth factors (E, I, IGF-I, PDGF, FGF a or b, or TGF-beta 1) were required to elicit a mitogenic response in the untransformed AKR-SF cells. Peak mitogenesis occurred from 18-20 h for all growth factors except TGF-beta 1 (32 h). Neither AKR-SF nor MCA-SF cells could grow with anchorage independence in serum-free medium, unless both TGF-beta 1 and FGF a or b were simultaneously present. The results indicate that this well-defined, serum-free model system can be utilized to detect growth factor-related alterations associated with the transformed state.  相似文献   

14.
Balb/3T3 cells transformed in culture by chemical carcinogens were shown to multiply in a medium supplemented with 2% calf serum or with 10% agamma new-born calf serum. The cell lines that multiply well in medium supplemented with 10% agamma serum produced a higher incidence of tumors in X-irradiated weanling mice than the lines that multiply poorly. The difference in 2-deoxy-D-glucose uptake into exponentially growing transformed and un-transformed cells was 50–100%. In crowded cultures untransformed Balb/3T3 cells ceased taking up the sugar, while chemically transformed cells continued at the same rate even at high cell densities; thus, the difference became greater in crowded cultures. When the serum concentration in the media was reduced from 10% to 2%, untransformed Balb/3T3 cells took up the sugar at a reduced rate, while chemically transformed cells were only slightly affected; agamma new born calf serum supplemented medium had no effect on sugar uptake in any of the cells. When the serum concentration was changed from 2% to 10%, untransformed cells increased sugar uptake followed by cell division. The immediacy (within 15 min) of the response in the sugar uptake to 10% serum concentration suggested that the increased uptake rate and the consequent higher concentration of the sugar (D-glucose in normal situation) within Balb/3T3 cells triggered the cell cycle. Chemical carcinogens appear to alter permanently the uptake mechanism for a key nutrient.  相似文献   

15.
Transformation of NIH 3T3 cells, induced by v-myc oncogene, activates a proliferative potential of the cells cultivated in the serum-free medium, and reduces the ratio of 3H-Tdr incorporation into the cells grown in the presence of 10% fetal serum in comparison to those grown in the serum-free medium. The v-myc transformed cells (NIH 3T3-v-myc) as well as the untransformed ones are very responsive to insulin. On the other hand, the epidermal growth factor, able to stimulate proliferation of NIH 3T3 cells, exert no effects on the NIH 3T3-v-myc cells. The NIH 3T3-v-myc cells cultivated in the medium, containing 2.5% human plasma enriched with thrombocytes, have the same proliferative characteristics as cells grown in the thrombocyte-free plasma. It is concluded that transformation of NIH 3T3 cells induced by v-myc oncogene may reduce a requirement for thrombocyte-released growth factors and EGF but not for insulin.  相似文献   

16.
Wound-healing of the gastric mucosa is suggested to be stimulated by hepatocyte growth factor (HGF). Polyamines are shown to contribute to repair after damage in the gastric mucosa. The present study was designed to elucidate whether HGF can stimulate wound-healing of the gastric mucosa via polyamine production, using rabbit gastric mucosal cells in primary culture. A wound was made as a round cell-free area in the cell sheet of confluent cultured cells. When HGF was added to the culture medium, such denuded area was significantly reduced in size compared with the control, but the reduction was inhibited by addition of D,L-alpha-difluoromethylornithine (DFMO), an inhibitor of a rate-limiting enzyme (ornithine decarboxylase) of polyamine biosynthesis, to the culture medium. However, the inhibitory effect by DFMO was reversed by pretreatment with spermidine, but not with putrescine. Intracellular levels of polyamines in the whole confluent cells including the cells around the denuded area were not changed by addition of HGF, but putrescine and spermidine levels were decreased by further addition of DFMO. We conclude that spermidine may be involved in stimulation by HGF in the repair after damage of gastric mucosal cells.  相似文献   

17.
Both mouse interferon-beta (MuIFN-beta) and the inhibitor of ornithine decarboxylase (ODC), alpha-difluoromethyl ornithine (DFMO), inhibited the differentiation of mouse 3T3-L1 fibroblasts into adipocytes in a dose-dependent manner. DFMO and MuIFN-beta added together to cultures that were induced to differentiate produced an additive anti-differentiation effect. In contrast to this additive cellular effect, DFMO reduced the antiviral activity of MuIFN-beta in both undifferentiated and differentiated cells; DFMO alone had no detectable effect on replication of encephalomyocarditis virus. Putrescine, the product of ornithine decarboxylation, when added to 3T3-L1 cultures (i) enhanced differentiation, (ii) reversed completely the inhibition of differentiation by DFMO, but (iii) had little effect on the antidifferentiation effect of MuIFN-beta. Polyamine content changed four-fold or less in cultures treated with 0.5 mM DFMO and less than two-fold in cultures treated with 100 IU/ml MuIFN-beta for seven days. Thus, it appears not only that MuIFN-beta and DFMO inhibit differentiation of 3T3-L1 cells by different mechanisms but also that the antiviral action of IFN does not involve the regulation of polyamine metabolism by ornithine decarboxylase.  相似文献   

18.
The sensitivity of cells to serum deprivation depends upon whether they are transformed. Most supplies of 3T3 cells are of this type and are considerably less sensitive than untransformed cells. In addition, the apparently simple manoeuvre of reducing serum levels has considerable effects on cell fragility, viability, growth rate and metabolism, which were found to be due to small changes in pH, substrate availability, cell density and other parameters, many of which cannot be attributed to the absence of growth factors from the medium. Supplementation of medium with bovine serum albumin (BSA) to compensate for low normal serum protein did not aid growth nor offset the disturbances caused by low serum levels themselves. Problems associated with the altered precursor availability for DNA, RNA and protein synthesis are also discussed.  相似文献   

19.
By varying growth conditions, we identified a novel mechanism of autocrine regulation of major histocompatibility complex (MHC) class I gene expression by induction of beta interferon gene expression in transformed BALB/c-3T3 cells. Low-serum conditions enhanced MHC class I antigen expression in v-rasKi- and v-mos-transformed BALB/c-3T3 cells but not in untransformed BALB/c-3T3 cells. Transformed and untransformed cells grown under standard serum conditions (10% bovine calf serum) expressed similar cell surface levels of MHC class I antigens. However, low-serum conditions (0.5% bovine calf serum) induced four- to ninefold increases in cell surface levels of MHC class I antigens in both v-rasKi- and v-mos-transformed cells but not in untransformed cells. These increases in MHC class I gene expression were seen at both the mRNA and cell surface protein levels and involved not only the heavy-chain component of the class I antigens but also beta 2 microglobulin. Beta 1 interferon mRNA and beta interferon-inducible 2',5'-oligoadenylate synthetase mRNA were induced by growth under low-serum conditions in transformed BALB/c-3T3 cells, and antibodies to beta interferon blocked the induction of MHC class I antigen expression by serum deprivation in these cells. These results demonstrate that growth under low-serum conditions leads to induction of beta interferon expression in oncogene-transformed cells which then directly mediates autocrine enhancement of MHC class I gene expression.  相似文献   

20.
Abstract We studied the effects of the ornithine decarboxylase inhibitors (2R,5R)-6-heptyne-2,5-diamine (R,R,-MAP) and α-difluoromethylornithine (DFMO) on cell proliferation and polyamine metabolism in 9L rat brain tumour cells. Treatment with 5 μM R,R-MAP inhibited cell proliferation to the same extent as did treatment with 1 mM DFMO. Both inhibitors depleted putrescine and spermidine concentrations to less than detectable levels within 24 h and 48 h of drug treatment, respectively; spermine levels were not affected significantly by either inhibitor. The effects of DFMO on 9L cell cycle kinetics were similar to those of R,R-MAP. During the first 3 days of treatment, both drugs caused an accumulation of cells in G1 and a reduction of cells in S phase, as compared with control cells with a slowing in the rate of cell cycle traverse. In cultures seeded at low (1 × 105), medium (5 × 105), or high (2 × 106) cell densities in a 25 cm2 flask, inhibition of cell proliferation and polyamine depletion by both R,R-MAP and DFMO was more pronounced at the lower densities relative to the density-matched control cells. Thus, R,R-MAP was a more potent inhibitor of ornithine decarboxylase than was DFMO in 9L cells, and the inhibitory effects of both compounds on cell proliferation and polyamine biosynthesis were greater in actively proliferating cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号