首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PMNL leukocytosis is a feature common to many types of infectious and inflammatory diseases. How PMNL are recruited to tissues is not yet clear although it is a question that has considerable clinical importance. We investigated the function of PMNL which migrated through an artificial barrier (Chinese hamster ovary (CHO) cells, collagen and nylon cloth membrane) subjected to CT or choleragenoid treatment toward plain medium (the same RPMI in the upper and lower chamber) or medium containing chemotactic factor (fMLP or LPS or ZAS). CT treatment significantly (P<0.01) reduced the FcγR expression on the surface of PMNL. The PMNL functions, namely, migration, phagocytic activity and intracellular killing of staphylococci, also have been reduced significantly (P<0.01). FcγR expression and some functions of PMNL that migrate to chemoattractants were reduced, irrespective of the presence or absence of CT; however, the inhibitory effect of CT on PMNL function was observed only when PMNL migrate to the lower chamber without chemotactic factor. On the other hand choleragenoid treatment of CHO cells did not have any significant influence on PMNL function and FcγR expression. In conclusion, our experiments demonstrate that CT reduces EAFc rosetting and the FcγR-dependent phagocytic and bactericidal activity of bovine blood PMNL.  相似文献   

2.
We have recently (Kawakami et al, Immunol. Lett. 1995;46: 143) demonstrated that unusual Mac-1+CD4?CD8? T cells bearing αβ antigen receptor (Mac-1+ αβ T cells) reside in a considerable proportion in murine lungs. The present study was performed to examine the dynamics of accumulation of these cells in the lungs following intravenous administration of Mycobacterium bovis BCG (BCG). Mac-1+ αβ T cells accumulated rapidly 24 hr after infection, followed by a gradual increase over the observation period of 15 days. Furthermore, the expression of Ia, ICAM-1 and FcγR II/III on their surface intensified dramatically after BCG infection. The kinetics of enhancement of Ia expression was slower than that of ICAM-1, with the maximum level attained in one day in the latter molecule but in two weeks in the former. Neutralization of endogenous IFN-γ by specific mAb completely blocked the augmented expression of Ia on Mac-1+ αβ T cells after BCG infection, but did not have any significant effect on that of ICAM-1. In contrast, in vivo administration of IFN-γ enhanced the expression of ICAM-1 as well as that of Ia. Our results indicate that accumulation of Mac-1 αβ T cells within the lung is associated with a differential change in the expression of surface antigens, and suggest that these cells may play a role in the host defense against mycobacterial infection.  相似文献   

3.
IgE-specific reverse plaque assay for the direct comparison of the IgE and IgG antibody responses was established and the method was employed for the assessment of the activity of IgE class-specific suppressor factor (IgE-TsF). In the in vitro culture system, the addition of IgE-TsF to DNP-KLH-primed spleen cells inhibited an antigen-induced increase of IgE-producing cells but did not show any effect on the IgG or IgM responses. Absorption of IgE-TsF with IgE-producing hybridoma cells removed the suppressor activity but IgM-producing hybridoma cells did not absorb the suppressor activity. The suppressor activity of IgE-TsF was removed by murine IgE-conjugated Sepharose column but not by IgM-, IgG-, or human IgE-conjugated column. The suppressor activity was eluted from IgE-column with glycine-HCI buffer, pH 3.2, or acetate buffer, pH 4.0, and the suppressor factor eluted from IgE-column was reabsorbed by anti-H-2d conjugated column. The results showed that IgE-specific suppressor factor was composed of the binding sites for IgE molecules and the H-2 gene products.  相似文献   

4.
While many cell types express receptors for the Fc domain of IgG (FcγR), only primate polymorphonuclear neutrophils (PMN) express an FcγR linked to the membrane via a glycan phosphoinositol (GPI) anchor. Previous studies have demonstrated that this GPI-linked FcγR (FcγRIIIB) cooperates with the transmembrane FcγR (FcγRIIA) to mediate many of the functional effects of immune complex binding. To determine the role of the GPI anchor in Fcγ receptor synergy, we have developed a model system in Jurkat T cells, which lack endogenously expressed Fcγ receptors. Jurkat T cells were stably transfected with cDNA encoding FcγRIIA and/or FcγRIIIB. Cocrosslinking the two receptors produced a synergistic rise in intracytoplasmic calcium ([Ca2+]i) to levels not reached by stimulation of either FcγRIIA or FcγRIIIB alone. Synergy was achieved by prolonged entry of extracellular Ca2+. Cocrosslinking FcγRIIA with CD59 or CD48, two other GPI-linked proteins on Jurkat T cells also led to a synergistic [Ca2+]i rise, as did crosslinking CD59 with FcγRIIA on PMN, suggesting that interactions between the extracellular domains of the two Fcγ receptors are not required for synergy. Replacement of the GPI anchor of FcγRIIIB with a transmembrane anchor abolished synergy. In addition, tyrosine to phenylalanine substitutions in the immunoreceptor tyrosine-based activation motif (ITAM) of the FcγRIIA cytoplasmic tail abolished synergy. While the ITAM of FcγRIIA was required for the increase in [Ca2+]i, tyrosine phosphorylation of crosslinked FcγRIIA was diminished when cocrosslinked with FcγRIIIB. These data demonstrate that FcγRIIA association with GPI-linked proteins facilitates FcγR signal transduction and suggest that this may be a physiologically significant role for the unusual GPI-anchored FcγR of human PMN.  相似文献   

5.
In vivo and in vitro regulation of IgE production in murine hybridomas   总被引:3,自引:0,他引:3  
Normal BALB/c mice injected i.p. with the IgE-secreting hybridomas B53 (epsilon, kappa anti-DNP), SE1.3 (epsilon, kappa, anti-arsonate) or A3B1 (epsilon, kappa, anti-TNP) were monitored for serum IgE concentrations and frequencies of splenic T lymphocytes with surface membrane receptors for the Fc portion of IgE (Fc epsilon R+ T lymphocytes). Mice with B53 or SE1.3 hybridomas initially developed high concentrations of IgE and CD8+ Fc epsilon R+ T lymphocytes, followed by a progressive decline in both serum IgE and expression of cytoplasmic epsilon-chains in the hybridoma cells. Serum IgE concentrations in mice with A3B1 hybridomas progressively increased without development of Fc epsilon R+ T lymphocytes nor a subsequent decline in IgE or change in cytoplasmic epsilon-chain expression in the A3B1 cells. An in vitro system in which the IgE-secreting hybridoma cells were cocultured with spleen cells harvested from mice with established B53 tumors was used to investigate the mechanisms involved in the inhibition of IgE production by the hybridoma cells. The results of these studies indicate that: 1) the induction/upregulation of Fc epsilon R on CD8+ T lymphocytes in vivo requires factors in addition to high serum IgE concentrations; 2) in addition to CD8+ Fc epsilon R+ T lymphocytes and monocytes, another, as yet unidentified, splenic cell component appears to contribute to the process by which epsilon-chain expression in IgE-secreting hybridoma cells is suppressed, and 3) a hybridoma (A3B1) that fails to induce CD8+, Fc epsilon R+ T lymphocytes in vivo and is not inhibited in IgE expression in vivo, nonetheless is inhibited in IgE expression in vitro when cocultured with spleen cells from mice with B53 tumors.  相似文献   

6.
Effector Fc gamma receptors (FcγRs) are expressed on the surface of a variety of cells of hematopoietic lineage and serve as a bridge between adaptive and innate immune responses. The interaction between immune complexes, formed by IgG class antibodies that are crosslinked with antigen, and FcγRs triggers signaling cascades that result in numerous cellular responses including the activation or donwregulation of cytotoxic responses, cytokine release, and antibody synthesis. Here, the extracellular domains of the human type I transmembrane FcγRs were expressed in Escherichia coli and their interactions to subclass IgGs (IgG1, IgG2, IgG3, and IgG4) antibodies were analyzed. Expression using fully synthetic E. coli codon optimized FcγR genes and optimization of sequences for N‐terminal translation initiation region through mRNA secondary structure prediction enabled us to achieve high yield of purified, bacterially expressed receptors, including FcγRI and FcγRIIIa which have not been successfully expressed in bacteria until now. The aglycosylated FcγRs showed similar IgG subclass binding selectivity compared to the respective glycosylated FcγRs expressed in mammalian cells. Biotechnol. Bioeng. 2010;107: 21–30. © 2010 Wiley Periodicals, Inc.  相似文献   

7.
Antigen-specific and idiotype-specific mouse suppressor T cell hybridomas were analyzed for the presence and specificity of Fc gamma receptors (Fc gamma R) by EA rosetting and by flow microfluorometry with the use of monoclonal antibodies. We found that four hybridomas expressed Fc gamma R specific for IgG1 and IgG2b, one of which became Fc gamma R- during prolonged culture. Four other hybridomas and the fusion parent, BW5147, consistently lacked Fc gamma R. The 125I-labeled Fc gamma R were isolated from surface radioiodinated hybridoma cells solubilized with 1% Nonidet P-40, were purified by using single or repetitive chromatography on mouse IgG-Sepharose columns, and were analyzed by SDS-PAGE. An 125I-labeled 56,000 to 61,000 Mr macromolecule was isolated from each of the Fc gamma R+ hybridomas, but from none of the Fc gamma R- hybridomas nor from BW5147 cells. This macromolecule rebound to insolubilized mouse IgG1, IgG2b, and human Fc fragments, but not to insolubilized mouse IgG2a, IgG3, or IgA or human F(ab')2 fragments, consistent with the specificity observed for Fc gamma R on intact hybridoma cells. The mouse suppressor T cell Fc gamma R differs in size and specificity from mouse B cell Fc gamma R. A 70,000 Mr protein expressed on all hybridomas and on BW5147 cells was radiolabeled and, despite preclearing with ovalbumin-Sepharose, bound to the mouse IgG-Sepharose columns, presumably due to mouse antibodies to gp-70. This macromolecule was completely and specifically removed by using goat antiserum to gp-70.  相似文献   

8.
We have developed a family of cloning vectors that direct expression of fusion proteins that mimic aggregated immunoglobulin (IgG) (AIG) and immune complex function with respect to their interactions with FcγR and that allow for the inclusion and targeting of a second protein domain to cells expressing FcγR. This was accomplished by expressing multiple linear copies of the hinge and CH2 domains (HCH2) of human IgG1 fused to the framework region of human IgG1 . Convenient restriction sites allow for the facile introduction of additional amino-terminal domains. The resulting molecule is tripartite. The carboxyl-IgG1 framework domain provides stability and permits dimerization, and the intervening polymer provides increased effector function and targeting to FcγR while the amino-terminal domain can deliver an additional signal to cells expressing FcγR. To demonstrate the utility of the vectors, the extracellular domain of human CD8α was expressed as a HCH2 polymer fusion protein. The fusion proteins were secreted in useful amounts from polyclonal cell lines established in Sf9 cells following transfection and selection with G418. The biological activity of the recombinant CD8α-HCH2 polymers was determined and compared to those of AIG and an anti-CD16 monoclonal antibody using an in vitro assay. The activity of the fusion proteins positively correlates to the number of HCH2 units. The largest polymer tested was severalfold more potent than AIG at similar concentrations. The HCH2 polymers described here represent a new strategy in the design of recombinant proteins for the therapeutic targeting of FcγR in autoimmune disorders.  相似文献   

9.
Gamma‐aminobutyric acid type A receptors (GABAARs) are the most important inhibitory chloride ion channels in the central nervous system and are major targets for a wide variety of drugs. The subunit compositions of GABAARs determine their function and pharmacological profile. GABAARs are heteropentamers of subunits, and (α1)2(β3)2(γ2L)1 is a common subtype. Biochemical and biophysical studies of GABAARs require larger quantities of receptors of defined subunit composition than are currently available. We previously reported high‐level production of active human α1β3 GABAAR using tetracycline‐inducible stable HEK293 cells. Here we extend the strategy to receptors containing three different subunits. We constructed a stable tetracycline‐inducible HEK293‐TetR cell line expressing human (N)–FLAG–α1β3γ2L–(C)–(GGS)3GK–1D4 GABAAR. These cells achieved expression levels of 70–90 pmol [3H]muscimol binding sites/15‐cm plate at a specific activity of 15–30 pmol/mg of membrane protein. Incorporation of the γ2 subunit was confirmed by the ratio of [3H]flunitrazepam to [3H]muscimol binding sites and sensitivity of GABA‐induced currents to benzodiazepines and zinc. The α1β3γ2L GABAARs were solubilized in dodecyl‐d ‐maltoside, purified by anti‐FLAG affinity chromatography and reconstituted in CHAPS/asolectin at an overall yield of ~30%. Typical purifications yielded 1.0–1.5 nmoles of [3H]muscimol binding sites/60 plates. Receptors with similar properties could be purified by 1D4 affinity chromatography with lower overall yield. The composition of the purified, reconstituted receptors was confirmed by ligand binding, Western blot, and proteomics. Allosteric interactions between etomidate and [3H]muscimol binding were maintained in the purified state.  相似文献   

10.
Pro‐inflammatory interleukin (IL)‐17‐producing γδ (γδ17) T cells are thought to develop exclusively in the thymus during fetal/perinatal life, as adult bone marrow precursors fail to generate γδ17 T cells under homeostatic conditions. Here, we employ a model of experimental autoimmune encephalomyelitis (EAE) in which hematopoiesis is reset by bone marrow transplantation and demonstrate unequivocally that Vγ4+ γδ17 T cells can develop de novo in draining lymph nodes in response to innate stimuli. In vitro, γδ T cells from IL‐17 fate‐mapping reporter mice that had never activated the Il17 locus acquire IL‐17 expression upon stimulation with IL‐1β and IL‐23. Furthermore, IL‐23R (but not IL‐1R1) deficiency severely compromises the induction of γδ17 T cells in EAE, demonstrating the key role of IL‐23 in the process. Finally, we show, in a composite model involving transfers of both adult bone marrow and neonatal thymocytes, that induced γδ17 T cells make up a substantial fraction of the total IL‐17‐producing Vγ4+ T‐cell pool upon inflammation, which attests the relevance of this novel pathway of peripheral γδ17 T‐cell differentiation.  相似文献   

11.
Cancer is an age‐associated disease, potentially related to the altered immune system of elderly individuals. However, cancer has gradually decreased incidence in the eldest globally such as the most common lung cancer, the mechanisms of which remain to be elucidated. In this study, it was found that the number of lung‐resident γδT cells was significantly increased with altered gene expression in aged mice (20–24 months) versus young mice (10–16 weeks). Aged lung Vγ4+ and Vγ6+ γδT cells predominantly produced interleukin‐17A (IL‐17A), resulting in increased levels in the serum and lungs. Moreover, the aged mice exhibited smaller tumors and reduced numbers of tumor foci in the lungs after challenge with intravenous injection of B16/F10 melanoma cells compared with the young mice. Aged lung Vγ4+ and Vγ6+ γδT cells were highly cytotoxic to B16/F10 melanoma cells with higher expression levels of CD103. The markedly longer survival of the challenged aged mice was dependent on γδT17 cells, since neutralization of IL‐17A or depletion of indicated γδT cells significantly shortened the survival time. Consistently, supplementation of IL‐17A significantly enhanced the survival time of young mice with lung melanoma. Furthermore, the anti‐tumor activity of aged lung γδT17 cells was not affected by alterations in the load and composition of commensal microbiota, as demonstrated through co‐housing of the aged and young mice. Intrinsically altered lung γδT17 cells underlying age‐dependent changes control lung melanoma, which will help to better understand the lung cancer progression in the elderly and the potential use of γδT17 cells in anti‐tumor immunotherapy.  相似文献   

12.
13.
Proteolysis and the reduction of disulfides, both major components of protein degradation, are profoundly influenced by phagosomal redox conditions in macrophages. We evaluated the activation of phagocytic receptors that are known to influence activation of the phagocyte NADPH oxidase (NOX2), and its effect on phagosomal protein degradation. Population‐based and single phagosome analyses of phagosomal chemistries in murine macrophages revealed that activation of NOX2 via the Fcγ receptor (FcγR) during phagocytosis decreased rates of proteolysis and disulfide reduction. Immunoglobulin G (IgG)‐stimulated reactive oxygen species (ROS) production and the inhibition of phagosomal proteolysis and disulfide reduction were dependent on NOX2, FcγR and protein kinase C (PKC)/spleen tyrosine kinase (Syk) signaling. In contrast, low levels of ROS production were observed following the phagocytosis of unopsonized beads, which resulted in higher rates of phagosomal proteolysis and disulfide reduction. Phagosomes displayed autonomy with respect to FcγR‐mediated differences in NOX2 activation and proteolysis, as phagosomes containing unopsonized cargo retained low NOX2 activation and high proteolysis even in the presence of phagosomes containing IgG‐opsonized cargo in the same macrophage. These results show that opsonization of phagocytic cargo results in vastly different phagosomal processing of proteins through the FcγR‐triggered, PKC/Syk‐dependent local assembly and activation of NOX2.   相似文献   

14.
The relationship between the production of a T cell factor having affinity for IgA (IgA-binding factor(s); IgA BF) and the expression of Fc receptors specific for IgA (Fc alpha R) was studied by using murine spleen cells activated with concanavalin A (Con A blasts). Fc alpha R was detected by the cytophilic binding of anti-TNP murine IgA myeloma protein (MOPC 315 IgA) to Con A blasts as determined by an indirect rosette method with trinitrophenylated sheep red blood cells (TNP-SRBC). After 18 hr preculture with IgA, Fc alpha R was expressed on 15 to 20% of Con A blasts, which released IgA BF suppressing the in vitro IgA synthesis of the spleen cells stimulated with pokeweed mitogen (PWM). Without preculture with IgA, there was neither induction of Fc alpha R nor the production of IgA BF from Con A blasts. Fc alpha R was not induced on Con A blasts by IgA if Fc gamma R(+) cells were depleted from the blasts by rosetting with SRBC sensitized with rabbit IgG antibody (EA gamma). Even after preculture with IgA, the suppressive IgA BF was undetectable in the culture supernatant of Con A blasts depleted of the Fc gamma R(+) cell population. By using a double rosette method with EA gamma and trinitrophenylated quail red blood cells, Fc alpha R proved to be co-expressed on Fc gamma R(+) precursor T cells in the Con A blasts. The results suggested that both Fc gamma R and Fc alpha R could be co-expressed on Con A blasts, as is the case with T2D4 Fc gamma R(+), Fc alpha R(+) T hybridoma cells, which are known to produce IgG-binding factor(s) (IgG BF) and IgA BF. The relationship between Fc gamma R and Fc alpha R on a single cell was studied by using monoclonal anti-Fc gamma R antibody (2. 4G2 ). The reactivity of 2. 4G2 antibody with T cell Fc gamma R was proved by the inhibition of EA gamma rosette formation by Con A blasts or T2D4 cells. The addition of 2. 4G2 monoclonal antibody, however, did not affect the induction of Fc alpha R on Con A blasts by IgA. Furthermore, the binding of IgA to Fc alpha R already expressed on L5178Y T lymphoma cell line cells was not inhibited by the monoclonal antibody. The results confirmed that Fc alpha R are distinct from Fc gamma R co-expressed on the same Con A blasts, and that the expression of Fc alpha R on Fc gamma R(+) T cells and their production of suppressive IgA BF may be induced by the binding of IgA to Fc alpha R.  相似文献   

15.
The ageing of an inevitable life function is an unavoidable regressive physical process. Peroxisome proliferator‐activated receptors (PPARs) are members of the nuclear hormone receptor family. PPARγ plays an important role in regulating several metabolic pathways. Recently, PPARγ has been implicated in inflammatory responses and age‐related diseases. The aim of this study was to determine the anti‐inflammatory reaction of PPARγ in an induced ageing progress. The late passage of human diploid fibroblasts (HDF), an in vitro ageing model, reveals the biological index materials of ageing. Aged cells showed decreased PPARγ expression and elevated levels of intracellular adhesion molecule‐1 (ICAM‐1), an inflammatory molecule. To induce the aged cell phenotype, the middle stage of HDF cells (PD31) were induced stress induced premature senescence (SIPS) with 200 µM H2O2 for 2 h. SIPS‐HDF cells showed high levels of ICAM‐1, extracellular signal regulated kinase (ERK1/2) activity and matrix metallomatrix protease (MMP‐2, ‐9) activity, and low levels of PPARγ expression. A reconstitution of SIPS HDF cells with Ad/PPARγ resulted in the downregulation of ICAM‐1, ERK1/2, MMP‐2 and ‐9, and normalized growth of SIPS‐HDF cells. Moreover, PPARγ in aged HDF cells reduced pro‐inflammatory molecules and eliminated the formation of reactive oxygen species (ROS) through the ERK1/2 pathway. These results strongly suggest that PPARγ plays a key role in age‐related inflammation and may have clinical applications as a molecular target in the treatment of age‐related inflammation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
To investigate the influence of hyperosmolar basal media on hybridoma response, S3H5/γ2bA2 and DB9G8 hybridomas were cultivated in a batch mode using hyperosmolar basal media resulting from additional sodium chloride supplementation. The basal media used in this study were IMDM, DMEM, and RPMI 1640, all of which are widely used for hybridoma cell culture. In IMDM, two hybridomas showed different responses to hyperosmotic stress regarding specific MAb productivity (q MAb), though they showed similar depression of cell growth in hyperosmolar media. Unlike S3H5/γ2bA2 hybridoma, the q MAb of DB9G8 hybridoma was not enhanced significantly around 390 mOsm kg?1. The variation of basal media influenced DB9G8 hybridoma response to hyperosmotic stress regarding q MAb. In IMDM, the q MAb of DB9G8 hybridoma was increased by more than 200% when the osmolality increased from 281 to 440 mOsm/kg. However, in RPMI 1640 and DMEM, similar amplitude of osmolality increase resulted in less than 100% increase in q MAb. The variation of basal media also influenced the cell growth in hyperosmolar medium. Both hybridomas were more tolerant against hyperosmotic stress in DMEM than in IMDM, which was found to be due to the high osmolality of standard DMEM. The osmolalities of standard IMDM and DMEM used for inocula preparation were 281 and 316 mOsm kg?1, respectively. Thus, when the cells were cultivated at 440 mOsm kg?1, the cells in IMDM experienced higher osmotic shock than in DMEM. By using the inoculum prepared at 317 mOsm kg?1 in IMDM, S3H5/γ2bA2 cell growth at 440 mOsm kg?1 in IMDM was comparable to that in DMEM. Taken together, the results obtained from this study show that the selection of basal media is an important factor for MAb production by employing hyperosmotic stress.  相似文献   

17.
The ability of murine bone marrow (BM) natural suppressor (NS) cells to suppress a Con A proliferation assay was greatly enhanced by supernatant obtained from the T cell hybridoma D9C1.12.17. Of the lymphokines produced by this hybridoma, three were found to enhance suppression: interleukin-3 (IL-3), IL-4, and IL-6. These molecules enhanced suppression of both unirradiated and irradiated (2000 R) BM cells indicating that augmented suppression was not just due to proliferation of NS cells. The ability of all three of the lymphokines to enhance BM suppression could be blocked by anti-interferon-gamma (IFN-gamma) antibody. These results indicate that (1) NS cell activity is not radiosensitive and (2) that two signals may be required for maximal NS cell suppression, one being a lymphokine-mediated signal and the other IFN-gamma.  相似文献   

18.
Dendritic cells are equipped with lectin receptors to sense the extracellular environment and modulate cellular responses. Human plasmacytoid dendritic cells (pDCs) uniquely express blood dendritic cell antigen 2 (BDCA2) protein, a C-type lectin lacking an identifiable signaling motif. We demonstrate here that BDCA2 forms a complex with the transmembrane adapter FcRIγ. Through pathway analysis, we identified a comprehensive signaling machinery in human pDCs, similar to that which operates downstream of the B cell receptor (BCR), which is distinct from the system involved in T cell receptor (TCR) signaling. BDCA2 crosslinking resulted in the activation of the BCR-like cascade, which potently suppressed the ability of pDCs to produce type I interferon and other cytokines in response to Toll-like receptor ligands. Therefore, by associating with FcRIγ, BDCA2 activates a novel BCR-like signaling pathway to regulate the immune functions of pDCs.  相似文献   

19.
Previous studies in man have shown that T cells with suppressor activity were mainly found among a subset bearing Fc receptors for IgG (Tγ). Recently, we found that virus-induced cytotoxic effector cells were also found predominantly among Tγ cells. In the present studies, we present evidence that similar, possibly overlapping T-cell populations can mediate both suppressor and cytotoxic activities when sensitized in vitro with virus-infected cells. In fact, both activities are found within the positively selected Tγ subset, but not in the Tγ-depleted population; both activities are abolished by irradiation but not by treatment with mitomycin C; a 1-hr exposition to theophylline at the onset of sensitization enhances both cytotoxic and suppressor activities. The data suggest that development of antiviral cell-mediated immune responses in vivo may also be accompanied by a concurrent induction of nonspecific suppressor cells. Such suppressor activity may play a role in the depressed cellular immune responsiveness which is associated with several systemic virus infections.  相似文献   

20.
We previously screened a series of macrophage hybridomas derived from fusion of P388D1 (H-2d) tumor cells with CKB (H-2k) splenic adherent cells for their ability to induce I-J restricted Ts cell responses. One Ia+ macrophage clone (63) consistently induced Ag-specific, I-J-restricted Ts. To evaluate whether macrophage hybridoma 63 also induced delayed-type hypersensitivity (DTH) immunity, mice were immunized with hapten-coupled macrophage hybridoma cells. Hapten-coupled splenic adherent cells and control macrophage hybridomas induced significant primary DTH responses, whereas hapten-coupled macrophage 63 induced little or no immunity when injected into H-2 compatible hosts. However, macrophage hybridoma 63 specifically activated I-Ak, I-Ad, or I-Ed restricted T cell hybridomas/clones, in vitro in the presence of appropriate Ag. Three different strategies designed to eliminate suppressor cell activity were successfully used to demonstrate that hapten-coupled macrophage 63 could also induce in vivo immunity. First, after immunization with hapten-coupled macrophages, mice were treated with cyclophosphamide. Second, macrophage 63 was treated with anti-IJ idiotype antibody before 4-hydroxy-3-nitrophenyl acetyl hapten (NP) coupling. Finally, haptenated macrophages were injected into I-A compatible but I-J incompatible recipients. These protocols are known to inhibit the induction of Ts activity, thus these results indirectly suggest that there is stimultaneous generation of Ts activity in vivo. The latter hypothesis was tested in adoptive transfer experiments. Transfer of lymph node cells from NP-63 primed B10.BR (H-2k) mice induced immunity in naive 4R animals, whereas the same number of immune cells suppressed NP-induced DTH responses in 5R mice. The combined results indicate that a cloned macrophage line can activate both Th and Ts cells. Macrophages which induce Ts activity may be responsible for maintaining the balance of immunity vs suppression. The data support the hypothesis that IJ interacting molecules (IJ-IM) expressed on macrophages are critical for induction of suppressor cell activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号