首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Taxol blocks the migrations of the sperm and egg nuclei in fertilized eggs and induces asters in unfertilized eggs of the sea urchins Lytechinus variegatus and Arbacia punctulata. Video recordings of eggs inseminated in 10 microM taxol demonstrate that sperm incorporation and sperm tail motility are unaffected, that the sperm aster formed is unusually pronounced, and that the migration of the egg nucleus and pronuclear centration are inhibited. The huge monopolar aster persists for at least 6 h; cleavage attempts and nuclear cycles are observed. Colcemid (10 microM) disassembles both the large taxol-stabilized sperm aster in fertilized eggs and the numerous asters induced in unfertilized eggs. Antitubulin immunofluorescence microscopy demonstrates that in fertilized eggs all microtubules are within the prominent sperm aster. Within 15 min of treatment with 10 microM taxol, unfertilized eggs develop numerous (greater than 25) asters de novo. Transmission electron microscopy of unfertilized eggs reveals the presence of microtubule bundles that do not emanate from centrioles but rather from osmiophilic foci or, at times, the nuclear envelope. Taxol-treated eggs are not activated as judged by the lack of DNA synthesis, nuclear or chromosome cycles, and the cortical reaction. These results indicate that: (a) taxol prevents the normal cycles of microtubule assembly and disassembly observed during development; (b) microtubule disassembly is required for the nuclear movements during fertilization; (c) taxol induces microtubules in unfertilized eggs; and (d) nucleation centers other than centrioles and kinetochores exist within unfertilized eggs; these presumptive microtubule organizing centers appear idle in the presence of the sperm centrioles.  相似文献   

2.
To clarify the mechanisms of fish fertilization, the effects of inhibitors of DNA polymerase-alpha and DNA topoisomerases on nuclear behavior before and after fertilization were examined in eggs of the medaka, Oryzias latipes. Eggs underwent the fertilization process from sperm penetration to karyogamy of pronuclei, even when inseminated and incubated in the continuous presence of aphidicolin (DNA polymerase alpha inhibitor), camptothecin (DNA topoisomerase I inhibitor), etoposide, or beta-lapachone (DNA topoisomerase II inhibitor). However, continuous treatment with aphidicolin or camptothecin during fertilization inhibited the formation of sister chromosomes that were normally separated into blastomeres at the time of the subsequent cleavage. Sister chromosome formation appeared concomitantly with an increase in histone H1 kinase activity at the end of DNA synthesis, 30 min post insemination. However, non-activated eggs that were inseminated in saline containing anesthetic MS222 and aphidicolin had high levels of histone H1 kinase and MAP kinase activities, and transformation of the penetrated sperm nucleus to metaphase chromosomes occurred even in the presence of aphidicolin or camptothecin. The male chromosomes were normally separated into two anaphase chromosome masses upon egg activation. These results suggest that DNA polymerase alpha or DNA topoisomerase I, but not DNA topoisomerase II, may be required for the process by which the mitotic interphase nucleus transforms to separable metaphase chromosomes while the activity of MAP kinase is low, unlike the situation in meiotic division, during which MAP kinase activity is high and DNA replication is not required.  相似文献   

3.
The involvement of newly synthesized proteins and calcium in meiotic processes, sperm nuclear transformations, and pronuclear development was examined in emetine-treated, fertilized, and A-23187-activated Spisula eggs by observing changes in the morphogenesis of the maternal and paternal chromatin. Emetine treatment (50 micrograms/ml) initiated 30 min before fertilization or A-23187 activation inhibited incorporation of [3H]leucine into TCA-precipitable material and blocked second polar body formation. Sperm incorporation and the initial enlargement of the sperm nucleus were unaffected; however, the dramatic enlargement and transformation of the sperm nucleus into a male pronucleus, which normally follow polar body formation, were delayed 10 to 20 min. Unlike the situation in untreated, control eggs, male pronuclear development took place while the maternally derived chromosomes remained condensed. It was not until approximately 20 min after the normal period of pronuclear development that the maternal chromosomes dispersed and formed a female pronucleus in emetine-treated, fertilized eggs. Formation of pronuclei, however, was unaffected in both emetine-treated, A-23187-activated eggs and fertilized eggs incubated with A-23187. These observations indicate that germinal vesicle breakdown, first polar body formation, and initial transformations of the sperm nucleus are independent of newly synthesized proteins. Inhibition of second polar body formation and the delay in pronuclear development brought about by emetine, as well as the appearance of silver grains over pronuclei in autoradiographs of control eggs incubated with [3H]leucine demonstrate that nascent proteins are involved with the completion of meiotic maturation and the development of male and female pronuclei. The ability of A-23187 to override the inhibitory effects of emetine on pronuclear development suggests that both nascent protein and calcium signals are involved in regulating the status of the maternal and paternal chromatin during pronuclear development.  相似文献   

4.
Starfish oocytes or eggs were inseminated at various times between first prometaphase and pronuclear stage, and were subsequently labeled with the thymidine analogue 5-bromo-2'-deoxyuridine (BrdU) in order to detect the onset of DNA synthesis phase (S phase) during the first cell cycle using a monoclonal antibody against BrdU. The interval between fertilization and the first S phase was found to be constant (30-45 min, depending on batches) in eggs fertilized after formation of the first polar body. Eggs fertilized before first polar body formation, however, always entered the S phase 10-20 min after the second polar body formation. On the basis of these observations we conclude that (i) the chain of events triggered by fertilization, collectively called "postactivation process" for the first S phase, goes on in parallel with the process of maturation and (ii) only the final step of the postactivation process is arrested until the termination of meiosis. In eggs that had been fertilized before the first polar body formation, the female and male pronuclei exhibited uniformly distributed chromatin soon after the second polar body formation. In eggs that had been fertilized after the second polar body formation, however, the chromatin of the pronuclei remained fibrillar even during the S phase. Thus full decondensation of chromatin appears to depend on a certain advance in the postactivation process.  相似文献   

5.
Zona-free hamster eggs have been fertilized in vitro with boar spermatozoa in a medium enriched by arginine-3H and the sites of localization of newly synthesized arginine-3H–labeled proteins have been investigated using fine-structure autoradiography. It was confirmed that such proteins are synthesized during fertilization and that they accumulate to a notable degree in decondensing sperm chromatin as well as in the chromatin of the female pronucleus and also of the second polar body. A similar process did evidently take place also in defective pronuclei, characterized by a core of a still condensed chromatin and by remaining nuclear membrane. In such male pronuclei the highest concentration of the label was seen just on the border of the condensed chromatin, on the expected site of nuclear protein exchange. It is supposed that, at least in this experimental system, any morphologically detectable sperm decondensation is accompanied immediately by a shift from sperm basic nuclear proteins to other nuclear proteins.  相似文献   

6.
Insemination of sea urchin (Arbacia) ova with mussel (Mytilus) sperm has been accomplished by treating eggs with trypsin and suspending the gametes in seawater made alkaline with NaOH. Not all inseminated eggs undergo a cortical granule reaction. Some eggs either elevate what remains of their vitelline layer or demonstrate no cortical modification whatsoever. After its incorporation into the egg, the nucleus of Mytilus sperm undergoes changes which eventually give rise to the formation of a male pronucleus. Concomitant with these transformations, a sperm aster may develop in association with the centrioles brought into the egg with the spermatozoon. Both the male pronucleus and the sperm aster may then migrate centrad to the female pronucleus. Evidence is presented which suggests that fusion of the male pronuclei from Mytilus sperm with female pronuclei from Arbacia eggs may occur, although this was not directly observed. These results demonstrate that Mytilus sperm nuclei are able to react to conditions within Arbacia eggs and differentiate into male pronuclei.  相似文献   

7.
In order to test the hypothesis that regulators of male pronuclear development may have a more general role, sharing some relation to factors involved with the cell cycle, Arbacia zygotes and 2- to 8-cell stage embryos were inseminated during different phases of the cell cycle and examined by light and electron microscopy. Differences in the development and morphology of fertilization cones and sperm asters were observed in embryos inseminated during different stages of the cell cycle. Extremely large fertilization cones, approximately four times the length of those found in fertilized eggs, formed in embryos inseminated during metaphase to telophase. Sperm asters developed only in embryos inseminated during prophase to anaphase. These variations are believed to reflect changes in the status of the cortex and cytoskeletal system of the embryo. Although sperm nuclei underwent morphological changes subsequent to incorporation, in general, they failed to develop into male pronuclei. There was a consistent correlation in sperm nuclear transformations and the cell cycle which was expressed in two patterns of morphogenesis: (1) sperm nuclei incorporated into embryos just prior to prophase and at telophase failed, for the most part, to disperse and transformed into aggregations of chromatin granules approximately 40 nm in diameter; and (2) sperm nuclei incorporated into prometaphase-anaphase embryos dispersed and then condensed into chromatin masses, morphologically similar to chromosomes of the embryo. Evidence is discussed which indicates that following the normal period of fertilization changes occur in the zygote, rendering it unable to fully support the transformation of sperm nuclei into male pronuclei.  相似文献   

8.
Changes in the morphology of the sperm nucleus in the egg cytoplasm are mong the immediate events in nucleocytoplasmic interactions during early embryogenesis. Soon after its entrance into the egg cytoplasm, the sperm nucleus of various organisms increases in size with the transformation of condensed chromatin to a diffuse state, resembling the chromatin of an interphase nucleus (2, 13, 15, 16). This is followed by a close association or fusion of male and female pronuclei (2, 13, 15, 16). Cytoplasmic influences on nuclear morphology have also been demonstrated clearly in nuclear transplantation and cell fusion studies (10, 11). Reactivation of the nucleus, such as the transplanted brain nucleus in Xenopus egg cytoplasm or the hen erythrocyte nucleus in interphase cytoplasm of HeLa cells, is accompanied by nuclear enlargement and chromatin dispersion (10, 11). However, premature mitotic-like chromosome condensation takes place in the nuclei of sperm or interphase cells fused with mitotic cells (9, 12). Thus, chromosome dispersion and condensation seem to depend on the state of the cytoplasm in which the nucleus is present. These observations imply that the initial morphological changes in the sperm nucleus after fertilization may very well be dependent on the state of maturation of eggs at the time of sperm entry. Unfertilized eggs of Urechis caupo, a marine echiuroid worm, are stored at the diakinesis stage. These eggs complete maturation division after insemination and this is followed by fusion of male and female pronuclei (5, 8). Therefore, Urechis caupo is a suitable organism in which to study the response of the sperm nucleus to the changing state of the egg cytoplasm during and after postfertilization maturation division.  相似文献   

9.
Changes in sperm nuclei incorporated into starfish, Asterina miniata, eggs inseminated at different stages of meiosis have been correlated with the progression of meiotic maturation. A single, uniform rate of sperm expansion characterized eggs inseminated at the completion of meiosis. In oocytes inseminated at metaphase I and II the sperm nucleus underwent an initial expansion at a rate comparable to that seen in eggs inseminated at the pronuclear stage. However, in oocytes inseminated at metaphase I, the sperm nucleus ceased expanding by meiosis II and condensed into chromosomes which persisted until the completion of meiotic maturation. Concomitant with the formation and expansion of the female pronucleus, sperm chromatin of oocytes inseminated at metaphase I enlarged and developed into male pronuclei. Condensation of the initially expanded sperm nucleus in oocytes inseminated at metaphase II was not observed. Instead, the enlarged sperm nucleus underwent a dramatic increase in expansion commensurate with that taking place with the maternal chromatin to form a female pronucleus. Fusion of the relatively large female pronucleus and a much smaller male pronucleus was observed in eggs fertilized at the completion of meiotic maturation. In oocytes inseminated at metaphase I and II, the male and female pronuclei, which were similar in size, migrated into juxtaposition, and as separate structures underwent prophase. The chromosomes in each pronucleus condensed, intermixed, and became aligned on the metaphase palate of the mitotic spindle in preparation for the first cleavage division. These observations demonstrate that the time of insemination with respect to the stage of meiotic maturation has a significant effect on sperm nuclear transformations and pronuclear morphogenesis.  相似文献   

10.
In vivo fertilization of cow eggs has been studied by electron microscopy. Eggs were recovered from intracervically inseminated heifers 30 to 42 hr after the onset of oestrus. The corona cells remained attached to 4 out of the 15 eggs studied, but no sign of sperm phagocytosis was noted. Spermatozoa close to the zona pellucida, but not in contact with it, were not acrosome reacted. In contrast, all sperm penetrating the zona pellucida had completed the acrosome reaction. Vesiculated products of the reaction were present at the zona surface of every penetrated egg, indicating that in this species, the acrosome reaction occurs at the surface of the zona pellucida. During sperm passage through the zona pellucida, the equatorial segment overlaid by its plasma membrane remained intact. Soon after penetration into the ooplasm, the sperm nucleus decondensed; at the same time, the female chromosomes resulting from the second meiotic division aggregated in a few masses of condensed chromatin. A nuclear envelope started to form around the condensed female chromatin, while it was not yet present around the decondensing male nucleus. After swelling, the two pronuclei presented similar ultrastructural morphology; they contained small, compact, agranular nucleoli with a large fibrillar center and unevenly distributed chromatin. The pronuclear envelope contained pores and presented characteristic blebbing. The endoplasmic reticulum was closely apposed to the nuclear envelope and large Golgi structures were proximal to the pronuclei.  相似文献   

11.
Microtubule assembly is required for the formation of the male and female pronuclei during mouse, but not sea urchin, fertilization. In mouse oocytes, 50 μM colcemid prevents the decondensation of the maternal meiotic chromosomes and of the incorporated sperm nucleus during in vitro fertilization. Nuclear lamins do not associate with either of the parental chromatin sets although peripherin, the PI nuclear peripheral antigen, appears on both. DN A synthesis docs not occur in these fertilized, colcemid-arrested oocytes. This effect is limited to the first hours after ovulation, since colcemid added 4–6 hours later no longer prevents pronuclear development, lamin acquisition, or DNA synthesis. Neither microtubule stabilization with 10 μM taxol nor microfilament inhibition with 10 μM cytochalasin D or 2.2 μg/ml lalrunculin A prevent these pronuclear events; these drugs will inhibit the apposition of the pronuclei at the egg center. In sea urchin eggs, colcemid or griseofulvin treatment doe? not result in the same effect and the male pronucleus forms with the attendant accumulation of the nuclear lamins. The differences in the requirement for microtubule assembly during pronucleus formation may be related to the cell cycle: In mice the sperm enters a meiotic cytoplasm, whereas in sea urchin eggs it enters an interphase cytoplasm. Refertilization of mitotic sea urchin eggs was performed to test the possibility that this phenomenon is related to whether the sperm enters a meiotic/mitotic cytoplasm or one at interphase; during refertilization at first mitosis, the incorporated sperm nucleus is unable to decondense and acquire lamins. These results indicate a requirement for microtubule assembly for the progression from meiosis to first interphase during mouse fertilization and suggest that the cytoskeleton is required for changes in nuclear architecture necessary during fertilization and the cell cycle.  相似文献   

12.
Summary During an in vitro fertilization (IVF) program 122 inseminated eggs showing polar body extrusion, but neither formation of pronuclei nor cell cleavage were analysed cytogenetically. Nine of these eggs showed prematurely condensed sperm chromosomes of the G1-phase (G1-PCC) besides the haploid set of maternal metaphase II chromosomes. This phenomenon can be explained by the permanent arrest of the oocytes at metaphase II after sperm penetration and hence the continuing presence of cytoplasmic chromosome condensing factors which lead to the induction of PCC in the sperm nucleus. The overall frequency of this aberrant type of fertilization was calculated to be in the order of 3–4% of all in vitro fertilized eggs.  相似文献   

13.
To understand the mechanism of the very slow block to polyspermy in physiologically polyspermic eggs of the newt Cynops pyrrhogaster, we used confocal laser microscopy to determine the distribution of gamma-tubulin and cyclin B1 in fertilized eggs. More gamma-tubulin was localized in the animal hemisphere than in the vegetal. The centrosomes of the principal sperm nucleus and the zygote nucleus had much accumulated gamma-tubulin, but little gamma-tubulin was associated with the centrosomes of the accessory sperm nuclei. These results are consistent with observations that the largest sperm aster is associated with the principal sperm nucleus. More cyclin B1 appeared in the animal hemisphere than in the vegetal at the end of interphase. The zygote nucleus had much accumulated cyclin B1, but little cyclin B1 was associated with the accessory sperm nuclei. Cyclin B1 disappeared earlier around the zygote nucleus at metaphase than around the accessory sperm nuclei. These findings correspond well with the earlier entry and exit into metaphase in the zygote nucleus than in the accessory sperm nuclei in newt eggs, supporting our maturation-promoting factor (MPF) model that accounts for the mechanism of nuclear degeneration in physiologically polyspermic eggs. Cyclin B1 began to accumulate in the nucleus during interphase in synchronous cleavage, and its greatest expression was in the centrosomes and the nucleus at prometaphase.  相似文献   

14.
The responses of the egg to insemination in a modified Fish Ringer's solution (FRS) were examined in eggs of the zebrafish ( Brachydanio rerio ) primarily by scanning electron microscopy. FRS is a physiological saline which temporarily inhibits parthenogenetic activation of the egg for 5–8 min. Spermatozoa were collected in a small volume of water and pipetted over eggs in FRS. Eggs inseminated in FRS typically incorporated the fertilizing sperm within 3–4 min. Inseminated cells showed an absence of a fertilization cone and no cortical granule exocytosis. The deep conical depression in the egg surface beneath the micropyle remained unaltered. Control eggs inseminated in tank water developed a large fertilization cone during sperm incorporation. Occasionally, eggs inseminated in water were observed to incorporate the entire sperm head prior to egg activation. Our results corroborate earlier findings showing that in the zebrafish, cortical granule exocytosis, fertilization cone formation and elevation of the sperm entry site are not triggered by the fertilizing sperm in experimental conditions (18, 19). Furthermore, sperm incorporation requires neither egg activation nor formation of a fertilization cone in this fish.  相似文献   

15.
In vivo fertilization of goat eggs has been studied by electron microscopy. Eggs were recovered from superovulated or natural cyclic goats, 32 to 52 hours after the onset of oestrus; only eggs recovered between 46 and 52 hours were fertilized. Spermatozoa penetrated the zona pellucida tangentially leaving vesiculated products of the acrosome reaction at the zona surface. As sperm penetrated into the ooplasm, the second meiotic division completed and cortical granule exocytosis occurred. However a few unreacted cortical granules usually remained in the cortex of the two fertilized eggs, adjacent to the plasma membrane. After swelling the two pronuclei presented similar ultrastructural morphology: they contained small, compact, agranular nucleoli and unevenly distributed chromatin. The cytoplasm in close vicinity to the apposed pronuclei contained large stacks of annulate lamellae, smooth endoplasmic reticulum, prominent Golgi complexes, as well as dense areas of unidentified material. The abundance of cytoplasmic organelles near the pronuclei might be the expression of intensive metabolic activity. Conversely, in the cortex of fertilized ova several large organelles-free cytoplasmic areas were randomly distributed.  相似文献   

16.
The formation of male and female pronuclei in physiologically monospermic fertilized eggs of the goldfish, Carassius auratus , has been investigated with transmission electron microscopy. Ultrastructural observations show that at 26°C the transformation of the sperm nucleus takes place very quickly. The sperm nuclear envelope degenerates and is replaced by a large number of smooth surface vesicles 1 min post-insemination. Concomitantly, most of the condensed sperm chromatin is dispersed and is surrounded by vesicles. Dispersion of the chromatin is followed by the fusion of vesicles and the formation of a new bilaminar pronuclear envelope. Within 5–10 min post-insemination, a spheroid male pronucleus with intranuclear annulate lamellae is produced. The formation of a female pronucleus is slightly different to that of the male pronucleus. The dispersing chromatin of the egg is divided into many groups, most of which are surrounded by multilaminar envelopes 5 min post-insemination. An ellipsoid female pronucleus with a continuous bilaminar pronuclear envelope and intranuclear annulate lamellae is formed 15 min post-insemination. Subsequently, the two pronuclei migrate towards one another. When the fully developed male and female pronuclei are located in the center of the blastodisc, each changes itself into a saccular complex 25 min post-insemination.  相似文献   

17.
To assess the role of the availability of sperm nuclear templates in the regulation of DNA synthesis, we correlated the morphological status of the fertilizing hamster sperm nucleus with its ability to synthesize DNA after in vivo and in vitro fertilization. Fertilized hamster eggs were incubated in 3H-thymidine for varying periods before autoradiography. None of the decondensed sperm nuclei nor early (Stage I) male pronuclei present after in vivo or in vitro fertilization showed incorporation of label, even in polyspermic eggs in which more advanced pronuclei were labeled. In contrast, medium-to-large pronuclei (mature Stage II pronuclei) consistently incorporated 3H-thymidine. To investigate the contribution of egg cytoplasmic factors to the regulation of DNA synthesis, we examined the timing of DNA synthesis by microinjected sperm nuclei in eggs in which sperm nuclear decondensation and male pronucleus formation were accelerated experimentally by manipulation of sperm nuclear disulfide bond content. Although sperm nuclei with few or no disulfide bonds decondense and form male pronuclei faster than nuclei rich in disulfide bonds, the onset of DNA synthesis was not advanced. We conclude the the fertilizing sperm nucleus does not become available to serve as a template for DNA synthesis until it has developed into a mature Stage II pronucleus, and that, as with decondensation and pronucleus formation, DNA synthesis also depends upon egg cytoplasmic factors.  相似文献   

18.
The chromosome complements of zygotes derived from oocytes aged post ovulation and fertilized in vivo with X-ray-irradiated sperm were studied. Ovulation was induced by an injection of luteinizing hormone-releasing hormone (LHRH) at pro-estrus and fertilization was achieved by artificial insemination at 13 h and 24 h after LHRH in order to obtain embryos from unaged and aged (12 h post-ovulation) oocytes respectively. Post-ovulatory aging prior to fertilization did not significantly affect the percentage of zygotes with irradiation-induced chromosome abnormalities. However, post-ovulatory aging had a negative effect on the morphology of male as well as female pronuclear chromosomes of the first cleavage metaphase. When fertilized with control spermatozoa this effect was apparent in both the male and the female pronucleus. When unaged oocytes were fertilized with X-irradiated spermatozoa chromosome morphology was also adversely affected in both pronuclei. In zygotes from aged oocytes, there was an extra negative effect of X-rays on the male pronuclear chromosomes only. After fertilization with X-irradiated sperm 27% of zygotes from aged oocytes were arrested at interphase compared to 7% from unaged oocytes. We suggest that post-ovulatory aging and X-rays affect the male and female pronuclear chromatin structure after fertilization. These chromatin alterations could interact with DNA lesions induced in the spermatozoa prior to fertilization, such that development to first cleavage can be blocked.  相似文献   

19.
The process of human male pronuclear formation was studied using an experimental model based on in vitro inseminated human zona-free eggs prepared from oocytes that failed to fertilize in a clinical in vitro fertilization program. The main ultrastructural changes in penetrated sperm nuclei transforming into pronuclei were used to define four stages of pronuclear development. The first two stages, representing partial (Stage 1) and total (Stage 2) sperm chromatin decondensation, appeared as early as 1 hr after mixing of gametes. This rapid initial phase was followed by a more lengthy array of events leading to transformation of decondensed sperm nuclei into fully developed male pronuclei (Stages 3 and 4). Stage 3 was characterized by reformation of the nuclear envelope, reorganization of chromatin, and the assembly of nuclcolar precursors. It was not completed until 12 hr after in vitro insemination when fully developed male pronuclei (Stage 4) were first observed. In some eggs pronuclei did not reach Stage 4 at all. The results of this study provide a morphological background for further research into molecular aspects of human male pronuclear development and its regulation.  相似文献   

20.
In sexual reproduction, the union of the male and female pronuclei occurs in fertilized eggs to mix genetic materials derived from both parents, thereby creating a new genome for the next generation [1-4]. The process leading to pronuclear union consists of pronuclear congression, which depends on astral microtubules derived from sperm centrosome [5-8], and the subsequent pronuclear fusion or karyogamy. The union process progresses in parallel with the first embryonic cell cycle, but the molecular mechanisms involved are poorly understood. Here, we devise a labeling method with Dendra2 to track both pronuclei individually in living starfish eggs. Although pronuclear union naturally proceeds while G1 arrest is released by fertilization and S phase progresses [9], we show that the cell-cycle resumption and progression are not prerequisites for pronuclear union. However, low levels of cyclin B- (but not cyclin A-) Cdk1 activity are detectable even in interphase, and are indispensable for pronuclear union, by contributing at least to pronuclear congression through formation of sperm aster. Pronuclear congression thus requires the activity of M-phase cell-cycle regulator in interphase, independently of the cell-cycle regulation. These findings not only provide a clue to the regulatory aspect of creation of new genome with fertilization, but also reveal a novel role for the M-phase Cdk1 during interphase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号