首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Previously we demonstrated the versatile utility of the Parapoxvirus Orf virus (ORFV) as a vector platform for the development of potent recombinant vaccines. In this study we present the generation of new ORFV recombinants expressing the hemagglutinin (HA) or nucleoprotein (NP) of the highly pathogenic avian influenza virus (HPAIV) H5N1. Correct foreign gene expression was examined in vitro by immunofluorescence, Western blotting and flow cytometry. The protective potential of both recombinants was evaluated in the mouse challenge model. Despite adequate expression of NP, the recombinant D1701-V-NPh5 completely failed to protect mice from lethal challenge. However, the H5 HA-expressing recombinant D1701-V-HAh5n mediated solid protection in a dose-dependent manner. Two intramuscular (i.m.) injections of the HA-expressing recombinant protected all animals from lethal HPAIV infection without loss of body weight. Notably, the immunized mice resisted cross-clade H5N1 and heterologous H1N1 (strain PR8) influenza virus challenge. In vivo antibody-mediated depletion of CD4-positive and/or CD8-posititve T-cell subpopulations during immunization and/or challenge infection implicated the relevance of CD4-positive T-cells for induction of protective immunity by D1701-V-HAh5n, whereas the absence of CD8-positive T-cells did not significantly influence protection. In summary, this study validates the potential of the ORFV vectored vaccines also to combat HPAIV.  相似文献   

2.
The genome of a porcine H1N1 influenza A strain is reported in this study. The strain proved to be a monoreassortant strain with a typical porcine N1 gene on the genetic backbone of the pandemic H1N1 influenza A virus strain. Monitoring of descendants of the pandemic 2009 H1N1 strain is needed because of concerns that more-virulent strains may emerge in forthcoming epidemic seasons.  相似文献   

3.
为了构建更为安全有效能同时抵抗高致病性H5亚型和低致病忡H9亚型禽流行性感冒(禽流感)病毒的基因工程疫苗,将H5和H9亚型禽流感病毒分离株的血凝素(HA)基因,分别由鸡痘病毒早晚期启动子PS和PE/L调控其转求,定向插入鸡痘病毒转移载体p11s中,获得H5A和H9A基因分别处于PS及PE/L启动子转录调控下的重组转移载体p11SH5H9。以FuGene^TM6转染法将p11SH5H9转染至已感染鸡痘病毒282E4疫苗株(wt-FPV)的鸡胚成纤维细胞(CEF)中。p11SH5H9与wt—FPV基因组DNA之间的同源重组产生了重组鸡痘病毒rFPV11SH5H9。通过在含X-gal的营养琼脂上连续挑选蓝色病毒蚀斑获得并纯化rFPV-11SH5H9。以间接免疫荧光法试验证实,纯化的rFPV-11SH5H9感染的CEF能同时表达H5A和H9A。初步的动物试验表明,用10^5PFU的rFPV-11SH5H9免疫无特定病原体(SPF)鸡,免疫后血凝抑制(HI)抗体监测阳性率均为100%(8/8);该重组病毒能显著抑制H9亚型AIV滴鼻、点眼后7日龄SPF鸡从气管和泄殖腔排毒,同时也能抵抗H5亚型AIV肌肉注射后对7日龄SPF鸡致死性攻击,保护率均为100%,显示出一定的应用前景。  相似文献   

4.
5.
Pigs are proposed to be “mixing vessel” hosts that can produce genetically novel reassortant viruses with pandemic potential. The appearance of any novel influenza viruses among pigs should pose concerns for human health. Here, we report the complete genome sequence of a novel H4N1 influenza virus [A/Swine/HuBei/06/2009(H4N1)] isolated from a pig in Central China in 2009. The genomic sequence analysis indicates that this virus is a wholly avian-original influenza virus. Each gene may come from different avian influenza viruses outside mainland China, suggesting the role of migratory birds in the dispersal of influenza virus.  相似文献   

6.
The rarely identified influenza A viruses of the H15 hemagglutinin subtype have been isolated exclusively in Australia. Here we report the isolation of an H15N4 influenza A virus (A/teal/Chany/7119/2008) in Western Siberia, Russia. Phylogenetic analysis demonstrated that the internal genes of the A/teal/Chany/7119/2008 strain belong to the Eurasian clade and that the H15 and N4 genes were introduced into the gene pool of circulating endemic avian influenza viruses through reassortment events.  相似文献   

7.
Pigs are capable of generating reassortant influenza viruses of pandemic potential, as both the avian and mammalian influenza viruses can infect pig epithelial cells in the respiratory tract. The source of the current influenza pandemic is H1N1 influenza A virus, possibly of swine origin. This study was conducted to understand better the pathogenesis of H1N1 influenza virus and associated host mucosal immune responses during acute infection in humans. Therefore, we chose a H1N1 swine influenza virus, Sw/OH/24366/07 (SwIV), which has a history of transmission to humans. Clinically, inoculated pigs had nasal discharge and fever and shed virus through nasal secretions. Like pandemic H1N1, SwIV also replicated extensively in both the upper and lower respiratory tracts, and lung lesions were typical of H1N1 infection. We detected innate, proinflammatory, Th1, Th2, and Th3 cytokines, as well as SwIV-specific IgA antibody in lungs of the virus-inoculated pigs. Production of IFN-γ by lymphocytes of the tracheobronchial lymph nodes was also detected. Higher frequencies of cytotoxic T lymphocytes, γδ T cells, dendritic cells, activated T cells, and CD4+ and CD8+ T cells were detected in SwIV-infected pig lungs. Concomitantly, higher frequencies of the immunosuppressive T regulatory cells were also detected in the virus-infected pig lungs. The findings of this study have relevance to pathogenesis of the pandemic H1N1 influenza virus in humans; thus, pigs may serve as a useful animal model to design and test effective mucosal vaccines and therapeutics against influenza virus.Swine influenza is a highly contagious, acute respiratory viral disease of swine. The causative agent, swine influenza virus (SwIV), is a strain of influenza virus A in the Orthomyxoviridae family. Clinical disease in pigs is characterized by sudden onset of anorexia, weight loss, dyspnea, pyrexia, cough, fever, and nasal discharge (21). Porcine respiratory tract epithelial cells express sialic acid receptors utilized by both avian (α-2,3 SA-galactose) and mammalian (α-2,6 SA-galactose) influenza viruses. Thus, pigs can serve as “mixing vessels” for the generation of new reassortant strains of influenza A virus that may contain RNA elements of both mammalian and avian viruses. These “newly generated” and reassorted viruses may have the potential to cause pandemics in humans and enzootics in animals (52).Occasional transmission of SwIV to humans has been reported (34, 43, 52), and a few of these cases resulted in human deaths. In April 2009, a previously undescribed H1N1 influenza virus was isolated from humans in Mexico. This virus has spread efficiently among humans and resulted in the current human influenza pandemic. Pandemic H1N1 virus is a triple reassortant (TR) virus of swine origin that contains gene segments from swine, human, and avian influenza viruses. Considering the pandemic potential of swine H1N1 viruses, it is important to understand the pathogenesis and mucosal immune responses of these viruses in their natural host. Swine can serve as an excellent animal model for the influenza virus pathogenesis studies. The clinical manifestations and pathogenesis of influenza in pigs closely resemble those observed in humans. Like humans, pigs are also outbred species, and they are physiologically, anatomically, and immunologically similar to humans (9, 23, 39, 40). In contrast to the mouse lung, the porcine lung has marked similarities to its human counterpart in terms of its tracheobronchial tree structure, lung physiology, airway morphology, abundance of airway submucosal glands, and patterns of glycoprotein synthesis (8, 10, 17). Furthermore, the cytokine responses in bronchoalveolar lavage (BAL) fluid from SwIV-infected pigs are also identical to those observed for nasal lavage fluids of experimentally infected humans (20). These observations support the idea that the pig can serve as an excellent animal model to study the pathogenesis of influenza virus.Swine influenza virus causes an acute respiratory tract infection. Virus replicates extensively in epithelial cells of the bronchi and alveoli for 5 to 6 days followed by clearance of viremia by 1 week postinfection (48). During the acute phase of the disease, cytokines such as alpha interferon (IFN-α), tumor necrosis factor alpha (TNF-α), interleukin-1 (IL-1), IL-6, IL-12, and gamma interferon (IFN-γ) are produced. These immune responses mediate both the clinical signs and pulmonary lesions (2). In acute SwIV-infected pigs, a positive correlation between cytokines in BAL fluid, lung viral titers, inflammatory cell infiltrates, and clinical signs has been detected (2, 48).Infection of pigs with SwIV of one subtype may confer complete protection from subsequent infections by homologous viruses and also partial protection against heterologous subtypes, but the nature of the immune responses generated in the swine are not fully delineated. Importantly, knowledge related to host mucosal immune responses in the SwIV-infected pigs is limited. So far only the protective virus-specific IgA and IgG responses in nasal washes and BAL fluid, as well as IgA, IgG, and IgM responses in the sera of infected pigs, have been reported (28). Pigs infected with H3N2 and H1N1 viruses have an increased frequency of neutrophils, NK cells, and CD4 and CD8 T cells in the BAL fluid (21). Pigs infected with the pandemic H1N1 virus showed activated CD4 and CD8 T cells in the peripheral blood on postinfection day (PID) 6 (27). Proliferating lymphocytes in BAL fluid and blood and virus-specific IFN-γ-secreting cells in the tracheobronchial lymph nodes (TBLN) and spleen were detected in SwIV-infected pigs (7). Limited information is available on the mucosal immune responses in pig lungs infected with SwIV, which has a history of transmission to humans.In this study, we examined the acute infection of SwIV (strain SwIV OH07) in pigs with respect to viral replication, pathology, and innate and adaptive immune responses in the respiratory tract of these pigs. This virus was isolated from pigs which suffered from respiratory disease in Ohio, and the same virus was also transmitted to humans and caused clinical disease (43, 55). Interestingly, like pandemic H1N1 influenza virus, SwIV also infects the lower respiratory tract of pigs. Delineation of detailed mucosal immune responses generated in pig lungs during acute SwIV OH07 infection may provide new insights for the development of therapeutic strategies for better control of virus-induced inflammation and for the design and testing of effective vaccines.  相似文献   

8.
In this report, a novel H5N2 avian influenza virus (AIV) was isolated from chickens in Tibet in 2010, western China. Phylogenetic analysis demonstrated that it was a natural reassortant between H9N2 and H5N1 subtypes. It is of note that this virus has an HP genotype with HA, PB2, M, and NS genes homologous to those of A/peregrine falcon/Hong Kong/2142/2008(H5N1)-like HPAIV isolated from dead wild birds. Publishing this genome information will contribute to the investigation of avian influenza epidemiology and to further research of AIV''s biological properties.  相似文献   

9.
2009年3月在美国和墨西哥流感样患者的呼吸道标本中鉴定出新的猪源性甲型H1N1流感病毒。该病毒可人一人传播,已蔓延到172个国家和地区。现就猪源性甲型H1N1流感病毒的鉴定、基因组结构特征做一综述。  相似文献   

10.
H1N1 strains of influenza A virus isolated during the influenza season of 1991–92 were divided into two groups according to the property of host-specific hemagglutination. Group 1 viruses agglutinated human and chicken red blood cells. Group 2 viruses agglutinated human but not chicken red blood cells. The viruses of both groups, however, showed the same antigenic structure determined with ferret antisera. The virus clones which were plaque-purified twice from a group 2 virus retained the characteristic of host-specific hemagglutination after five successive passages in MDCK cells, indicating that this phenomenon is genetically determined. However, the amino acid, sequences of the hemagglutinin (HA) polypeptides deduced from the nucleotide sequences of the HA gene of the two groups did not show any differences between them. This suggests a difference in amino acids in some other polypeptide(s), which affects the host-specific hemagglutination.  相似文献   

11.
采用CPE-MTT方法筛选从海漆叶部分离到的具有抗H1N1病毒活性的内生放线菌,对活性较强的菌株HA12207进行形态学和生理生化特性的研究,并对其16S r DNA序列进行系统发育分析。结果表明,菌株HA12207发酵液稀释20倍后对H1N1病毒的抑制率达到76.5%,HA12207与Tsukamurella tyrosinosolvens IMMIBD-1397T(YI2246)的形态和生理生化特征最为接近,与其16S r DNA序列相似性为99.9%,且在发育树上聚为一个分支。因此将菌株HA12207鉴定为T.tyrosinosolvens,其发酵液具有较强的体外抗H1N1病毒活性,值得进一步研究。  相似文献   

12.
A safe and effective vaccine is the best way to prevent large-scale highly pathogenic avian influenza virus (HPAI) H5N1 outbreaks in the human population. The current FDA-approved H5N1 vaccine has serious limitations. A more efficacious H5N1 vaccine is urgently needed. Parainfluenza virus 5 (PIV5), a paramyxovirus, is not known to cause any illness in humans. PIV5 is an attractive vaccine vector. In our studies, a single dose of a live recombinant PIV5 expressing a hemagglutinin (HA) gene of H5N1 (rPIV5-H5) from the H5N1 subtype provided sterilizing immunity against lethal doses of HPAI H5N1 infection in mice. Furthermore, we have examined the effect of insertion of H5N1 HA at different locations within the PIV5 genome on the efficacy of a PIV5-based vaccine. Interestingly, insertion of H5N1 HA between the leader sequence, the de facto promoter of PIV5, and the first viral gene, nucleoprotein (NP), did not lead to a viable virus. Insertion of H5N1 HA between NP and the next gene, V/phosphorprotein (V/P), led to a virus that was defective in growth. We have found that insertion of H5N1 HA at the junction between the small hydrophobic (SH) gene and the hemagglutinin-neuraminidase (HN) gene gave the best immunity against HPAI H5N1 challenge: a dose as low as 1,000 PFU was sufficient to protect against lethal HPAI H5N1 challenge in mice. The work suggests that recombinant PIV5 expressing H5N1 HA has great potential as an HPAI H5N1 vaccine.  相似文献   

13.
14.
Pigs are considered intermediate hosts for the transmission of avian influenza viruses (AIVs) to humans but the basic organ pathogenesis of AIVs in pigs has been barely studied. We have used 42 four-week-old influenza naive pigs and two different inoculation routes (intranasal and intratracheal) to compare the pathogenesis of a low pathogenic (LP) H5N2 AIV with that of an H1N1 swine influenza virus. The respiratory tract and selected extra-respiratory tissues were examined for virus replication by titration, immunofluorescence and RT-PCR throughout the course of infection. Both viruses caused a productive infection of the entire respiratory tract and epithelial cells in the lungs were the major target. Compared to the swine virus, the AIV produced lower virus titers and fewer antigen positive cells at all levels of the respiratory tract. The respiratory part of the nasal mucosa in particular showed only rare AIV positive cells and this was associated with reduced nasal shedding of the avian compared to the swine virus. The titers and distribution of the AIV varied extremely between individual pigs and were strongly affected by the route of inoculation. Gross lung lesions and clinical signs were milder with the avian than with the swine virus, corresponding with lower viral loads in the lungs. The brainstem was the single extra-respiratory tissue found positive for virus and viral RNA with both viruses. Our data do not reject the theory of the pig as an intermediate host for AIVs, but they suggest that AIVs need to undergo genetic changes to establish full replication potential in pigs. From a biomedical perspective, experimental LP H5 AIV infection of pigs may be useful to examine heterologous protection provided by H5 vaccines or other immunization strategies, as well as for further studies on the molecular pathogenesis and neurotropism of AIVs in mammals.  相似文献   

15.
运用噬菌体表面呈现技术,从禽流感病人恢复期血中获得淋巴细胞,通过基因工程手段,构建了人源抗H5NI禽流感病毒基因工程抗体文库.用纯化的人源H5N1禽流感病毒颗粒(A/Anhui/1/2005)及重组血凝素蛋白HA(A/Viet Nam/1203/2004)对Fab噬菌体抗体库进行富集筛选,成功地获得了抗禽流感病毒H5N1血凝素蛋白HA的人源单抗Fab段基因,并在大肠杆菌中获得有效表达.通过序列测定确定抗体轻重链型别,然后将阳性克隆的轻链和重链Fd段基因分别克隆入全抗体表达载体pAC-L-Fc后转染昆虫Sf9细胞,利用杆状病毒/昆虫细胞系统实现全抗体的分泌型表达.用ELISA、IFA和流式细胞术对所获人源单抗的功能特性进行鉴定.结果表明,我们获得了2株特异性针对H5N1禽流感病毒血凝素蛋白HA而与甲1型和甲3型人流感病毒无交叉反应的人源单抗(AVFlulgG01、AVFlulgG03).微量中和试验结果表明,除A/Guangdong/1/2006外,AVFlu-IgG01能够广泛地中和HA基因进化上属于Clade 2的中国南方、北方及中部地区的H5N1禽流感病毒分离株,同时还对属于Clade Ⅰ的越南H5N1分离株A/Viet Nam/1203/2004具有中和活性;AVFluIgG03虽然不能中和A/Viet Nam/1203/2004,但是对属于Clade 2的所有中国H5N1分离株均具有中和作用.人源中和性抗禽流感病毒H5N1基因工程全抗体的获得不仅为高致病性禽流感病毒H5N1的预防和治疗带来了希望,同时也为其疫苗研制提供了新的思路.  相似文献   

16.

Background

In April 2009, the first cases of pandemic (H1N1)-2009 influenza [H1N1sw] virus were detected in France. Virological surveillance was undertaken in reference laboratories of the seven French Defence Zones.

Methodology/Principal Findings

We report results of virological analyses performed in the Public Hospitals of Marseille during the first months of the outbreak. (i) Nasal swabs were tested using rapid influenza diagnostic test (RIDT) and two RT-PCR assays. Epidemiological characteristics of the 99 first suspected cases were analyzed, including detection of influenza virus and 18 other respiratory viruses. During three months, a total of 1,815 patients were tested (including 236 patients infected H1N1sw virus) and distribution in age groups and results of RIDT were analyzed. (ii) 600 sera received before April 2009 and randomly selected from in-patients were tested by a standard hemagglutination inhibition assay for antibody to the novel H1N1sw virus. (iii) One early (May 2009) and one late (July 2009) viral isolates were characterized by sequencing the complete hemagglutinine and neuraminidase genes. (iiii) Epidemiological characteristics of a cluster of cases that occurred in July 2009 in a summer camp were analyzed.

Conclusions/Significance

This study presents new virological and epidemiological data regarding infection by the pandemic A/H1N1 virus in Europe. Distribution in age groups was found to be similar to that previously reported for seasonal H1N1. The first seroprevalence data made available for a European population suggest a previous exposure of individuals over 40 years old to influenza viruses antigenically related to the pandemic (H1N1)-2009 virus. Genomic analysis indicates that strains harbouring a new amino-acid pattern in the neuraminidase gene appeared secondarily and tended to supplant the first strains. Finally, in contrast with previous reports, our data support the use of RIDT for the detection of infection in children, especially in the context of the investigation of grouped cases.  相似文献   

17.
2004年1月湖北宜昌某鸡场暴发疫病,从该鸡场濒死鸡肺组织中分离到了一株病毒,电镜切片观察到典型的禽流感病毒粒子;采用ELISA检测禽流感抗原为阳性;RT-PCR扩增HA、NA基因并测序,经BLAST分析,HA基因与A/Goose/Guangdong/1/96(H5N1)HA基因同源性为97%;NA基因与A/Goose/Guangdong/1/96(H5N1)NA基因同源性为96%,确定该分离株为禽流感病毒H5N1亚型(A/Chicken/Yichang/Lung-1/04(H5N1))。  相似文献   

18.
Vaccination is an effective means to protect against influenza virus. Although inactivated and live-attenuated vaccines are currently available, each vaccine has disadvantages (e.g., immunogenicity and safety issues). To overcome these problems, we previously developed a replication-incompetent PB2-knockout (PB2-KO) influenza virus that replicates only in PB2 protein-expressing cells. Here, we generated two PB2-KO viruses whose PB2-coding regions were replaced with the HA genes of either A/California/04/2009 (H1N1pdm09) or A/Vietnam/1203/2004 (H5N1). The resultant viruses comparably, or in some cases more efficiently, induced virus-specific antibodies in the serum, nasal wash, and bronchoalveolar lavage fluid of mice relative to a conventional formalin-inactivated vaccine. Furthermore, mice immunized with these PB2-KO viruses were protected from lethal challenges with not only the backbone virus strain but also strains from which their foreign HAs originated, indicating that PB2-KO viruses with antigenically different HAs could serve as bivalent influenza vaccines.  相似文献   

19.
20.
The declaration of the human influenza A pandemic (H1N1) 2009 (H1N1/09) raised important questions, including origin and host range [1], [2]. Two of the three pandemics in the last century resulted in the spread of virus to pigs (H1N1, 1918; H3N2, 1968) with subsequent independent establishment and evolution within swine worldwide [3]. A key public and veterinary health consideration in the context of the evolving pandemic is whether the H1N1/09 virus could become established in pig populations [4]. We performed an infection and transmission study in pigs with A/California/07/09. In combination, clinical, pathological, modified influenza A matrix gene real time RT-PCR and viral genomic analyses have shown that infection results in the induction of clinical signs, viral pathogenesis restricted to the respiratory tract, infection dynamics consistent with endemic strains of influenza A in pigs, virus transmissibility between pigs and virus-host adaptation events. Our results demonstrate that extant H1N1/09 is fully capable of becoming established in global pig populations. We also show the roles of viral receptor specificity in both transmission and tissue tropism. Remarkably, following direct inoculation of pigs with virus quasispecies differing by amino acid substitutions in the haemagglutinin receptor-binding site, only virus with aspartic acid at position 225 (225D) was detected in nasal secretions of contact infected pigs. In contrast, in lower respiratory tract samples from directly inoculated pigs, with clearly demonstrable pulmonary pathology, there was apparent selection of a virus variant with glycine (225G). These findings provide potential clues to the existence and biological significance of viral receptor-binding variants with 225D and 225G during the 1918 pandemic [5].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号