首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cilia membrane preparations from axenically grown Paramecium contain ATPase activities with distinct electrophoretic mobilities on Triton-polyacrylamide gels [M. J. Doughty and E. S. Kaneshiro (1983) J. Protozool.30, 569–575]. Such gel analyses also show additional ATPase activity bands associated with ciliary axonemes (dyneins), cell pellicles, exocytotic trichocysts, and the external cell surface (ectoenzyme). In the present report, the in vitro properties of these activities in various cell fractions were compared. The activity in ciliary membranes was stimulated by Ca2+ > Mg2+, in pellicles by Ca2+ > Mg2+, and in trichocysts by Ca2+ = Mg2+. The ecto-ATPase was strictly Ca2+ dependent. Determination of the affinities for various phosphate-containing substrates showed that the activities in all fractions were nucleoside triphosphate phosphohydrolases. Unlike the axonemal dynein ATPases, all other fractions were vanadate- and p-chloromercuribenzoate-insensitive. Activities in all cell fractions were sensitive to ruthenium red, the ciliary membrane being the most sensitive (Ki = 4 μm). The ciliary membrane Ca2+ ATPase activity exhibited an apparent affinity for CaATP2− of 9 μm and was inhibited by other divalent cations, La3+, and phosphate, but not by ADP or AMP. The kinetic properties of the ciliary membrane Ca2+ ATPase activity in wild type and several behavioral mutants were similar except for those in the pawn mutant, d495, and the paranoiac mutant, d490, both of which had lower specific activities. These studies support the finding that the ciliary membrane ATPase activity of Paramecium is a specific Ca2+-dependent ATPase distinct from other divalent cation-dependent ATPase activities found in either the cilia or other cell surface structures.  相似文献   

2.
《Insect Biochemistry》1991,21(7):749-758
The present study confirms previous reports of the presence of (Na+ + K+)-ATPase and anion-stimulated ATPase activity in Malpighian tubules of Locusta. In addition, the presence of a K+-stimulated, ouabain-insensitive ATPase activity has been identified in microsomal fractions. Differential and sucrose density-gradient centrifugation of homogenates has been used to separate membrane fractions which are rich in mitochondria, apical membranes and basolateral membranes; as indicated by the presence of succinate dehydrogenase and the presence or absence of non-specific alkaline phosphatase activity, respectively. Relatively high specific (Na+ + K+)-ATPase activity was associated with the basolateral membrane-rich fractions with only low levels of this activity being associated with the apical membrane-rich preparation. K+-stimulated ATPase activity was also associated, predominantly, with the basolateral membrane-rich fractions. However, comparison of the distribution of this activity with that of the (Na+ + K+)-ATPase suggests that the two enzymes did not co-separate. The possibility that the K+-stimulated ATPase was not associated with the basolateral plasma membrane is discussed.Anion-stimulated ATPase activity was found in the apical and basolateral membrane-rich fractions and in the fraction contaning mainly mitochondria. Nevertheless, the fact that this bicarbonate-stimulated activity did not co-separate with succinate dehydrogenase activity suggests that it was not exclusively mitochondrial in origin. These results are consistent with physiological studies indicating a basolateral (Na+ + K+)-ATPase but do not support the K+-stimulated ATPase as a candidate for the apical electrogenic pump. The possible role of the bicarbonate-stimulated ATPase activity in ion transport across both the basolateral and apical cell membranes is discussed.  相似文献   

3.
Antiserum to Ca2+-activated ATP phosphohydrolase (EC 3.6.1.3) isolated and purified from membranes of Micrococcus lysodeikicus was prepared in rabbits and guinea pigs. The γ-globulin fractions of these antisera reacted with and inhibited ATPase activity in isolated membranes but failed to absorb to intact protoplasts or purified mesosome fractions. ATPase activity was not detectable in the purified mesosomal preparations and trypsin treatment and sonication failed to release any activity. Ferritin conjugated to the γ-globulin fractions of the antiserum reacted with the ATPase particles on the membrane as visualized in negatively stained preparations examined in the electron microscope. Labeled membranes showed a distribution of ferritin very similar to the patterns observed for ATPase particles on untreated membranes. No significant labeling occurred when the ferritin conjugate was reacted with intact protoplasts or mesosome fractions. Thin sections of ferritin-labeled membranes established the asymmetric disposition of the ATPase, with the conjugate visible on only one side of the membrane. The results indicate that the ATPase protein occurs on the inner face of the membrane. All labeling experiments were verified immunologically. When ferritin-labeled membranes were subjected to the selective release procedure used in releasing the ATPase-like particles from the membranes, a complex of ferritin-conjugate associated with the ATPase particles was released. The selective release of ferritin-antibody-enzyme complexes from the membrane opens up a new way of studying the molecular architecture of cell membranes.  相似文献   

4.
ABSTRACT. Cyclic AMP binding activity was determined in the ciliate Tetrahymena pyriformis NT-1 strain. The fractions having the binding activity were eluted in a single peak coincident with a protein kinase activity. Although metal ions were not essential for activity, the binding was slightly activated by Mg2+ or Ca2+. The binding activity was sensitive to temperature, ionic strength, and pH of the reaction mixture and was decreased by treatment of the cytosol protein with trypsin or by heating at 100°C. The binding was specific for cyclic AMP, with an estimated apparent Kd of 40 nM. When the cyclic AMP binding activity in subcellular fractions was measured, an increase in the activity of ciliary, mitochondrial, and microsomal fractions was observed during the transition from the exponential to the stationary phase of cell growth, whereas no significant change occurred in the binding activity of the whole cell homogenate. These results suggest that the redistribution of cyclic AMP binding proteins may be implicated in the regulation of cyclic AMP concentration in the cell.  相似文献   

5.
Summary The distribution of adenosine triphosphatase (ATPase) activity in the phloem of petioles and minor veins of Cucurbita maxima has been studied using a lead phosphate precipitation procedure. ATPase activity was localized in sieve elements, companion cells and parenchyma cells. Activity was found at the cell surfaces, associated with the dispersed P-protein of mature sieve elements, in mitochondria, sieve-element reticulum, and at specific regions of the cell walls. It is suggested that the ATPase at the phloem cell surfaces may function in intercellular transport of assimilates or ions, and that the ATPase activity associated with the P-protein may function in the translocation process or in callose deposition.  相似文献   

6.
ABSTRACT. The multiplication rate of “wild-type” (WT) populations of Acanthamoeba castellanii was inhibited 50% by ~3 μg otigomycin/ml; OliR2 an oligomycin resistant cell line, required ~27 μg/ml for the same inhibition. ATPase solubilized from OliR2 mitochondrial fractions required 3–10-fold higher concentrations of oligomycin than did identical WT fractions to achieve 50% inhibition of activity. Resistance was correlated with altered mitochondrial ATPase sensitivity to oligomycin.  相似文献   

7.
The association of an ATPase with the yeast peroxisomal membrane was established by both biochemical and cytochemical procedures. Peroxisomes were purified from protoplast homogenates of the methanol-grown yeast Hansenula polymorpha by differential and sucrose gradient centrifugation. Biochemical analysis revealed that ATPase activity was associated with the peroxisomal peak fractions which were identified on the basis of alcohol oxidase and catalase activity. The properties of this ATPase closely resembled those of the mitochondrial ATPase of this yeast. The enzyme was Mg2+-dependent, had a pH optimum of approximately 8.5 and was sensitive to N,N-dicyclohexylcarbodiimide (DCCD), oligomycin and azide, but not to vanadate. A major difference was the apparent K m for ATP which was 4–6 mM for the peroxisomal ATPase compared to 0.6–0.9 mM for the mitochondrial enzyme.Cytochemical experiments indicated that the peroxisomal ATPase was associated with the membranes surrounding these organelles. After incubations with CeCl3 and ATP specific reaction products were localized on the peroxisomal membrane, both when unfixed isolated peroxisomes or formaldehyde-fixed protoplasts were used. This staining was strictly ATP-dependent; in controls performed i) in the absence of substrate, ii) in the presence of glycerol 2-phosphate instead of ATP, or iii) in the presence of DCCD, staining was invariably absent. Similar staining patterns were observed in subcellular fractions and protoplasts of Candida utilis and Trichosporon cutaneum X4, grown in the presence of ethanol/ethylamine or ethylamine, respectively.Abbreviations MES 2-(N-Morpholino)ethanesulfonic acid - DCCD N,N-dicyclohexylcarbodiimide  相似文献   

8.
The following characteristics of the adenosine triphosphatases (ATPase) in the saccus vasculosus were studied in Salmo gairdneri Richardson: 1) distributional pattern, 2) cytochemical properties in relation to different substrates, inhibitors, pH and bivalent metal ions, and 3) ultrastructural localization. Ultracytochemical studies using modifications of the Washstein-Meisel technique showed that within the pH range 7.1-8.0 several Mg++ or Ca++-activated ATPase are localized on the intracellular surface of membranes and in the cytoplasm of ependymal coronet cells and tanycytes ("supporting cells", "Zwischenzellen", glial cells"). The high ATPase activity at the level of the specialized luminal plasma membranes of coronet cell globules and of tanycyte microvilli is discussed in relation to phenomena of active transport and a possible resulting transfer of low-molecular weight substances into and/or from the cerebrospinal fluid (CSF). The localization of ATPase on the specialized membranes of primary vesicles is considered in connection with available structural and enzyme-cytochemical data on a possible function of these cell organelles in storage and release of substances (including Ca++ ions?). The cytoplasmic ATPase activity in coronet cells is ascribed to microtubules and/or possible existing contractile proteins/filaments, presumably concerned with internal transport or motility processes. In tanycytes ATPase activity is believed to be associated with the characteristic microfilamentous system of still unknown function. The ATPase activity in the (9 + 0) ciliary apparatus of globules could not be interpreted in terms of motility. The present study provides further support to the proposed hypothesis of the transport function of the saccus vasculosus, and an extension of the concept in the sense that not only the principal coronet cells, but also the tanycytes of this circumventricular organ are involved in CSF-homeostasis.  相似文献   

9.
To further study the toxicity of cadmium in the euryhaline alga, Dunaliella bioculata, ATPase activity and Cd2+ interactions were investigated in this species.Ultracytochemical studies showed the presence of ATPase reaction after incubation with Ca2+ and Mg2+, on different cell structures, the cytoplasm, the nucleoplasm, the axoneme and the membrane of the flagellae. In the cytoplasm, the localization of the lead precipates suggests that they are associated with the endoplasmic reticulum.The in vitro measurement of enzyme activity in crude cell extracts obtained by a partial solubilization of deflagellated algae with Triton X100, revealed a high Mg2+ dependent pyrophosphatase activity, a weak Mg2+-ATPase and a Ca2+-ATPase (Km = 0.12 mM) which was little sensitive to vanadate. In these extracts, a Ca2+ dependent ATPase was detected at the level of a double band by a non-denaturing electrophoresis. The same activity was found in the supernatant of sonicated cells in the absence of detergent, which suggests that this ATPase could be a cytosolic enzyme.In plasma membrane fractions, vanadate-sensitive ATPase activity was measured. This reaction was activated either by Mg2+ at relatively low concentrations (Km = 150µm) or by Ca2 +, but required unusually high concentrations of this ion, 50–100 mM.The inhibitory effects of Cd2+ on Ca2+ ATPase activity in cell extracts were compared with those of other cations. The range of toxicity was: Zn2+ > Cd2+ > Cu2+ > La3+ > Co2+. For Cd2+, the IC50 was 42 µM. The nature of inhibition, though, mixed was for the most part competitive, since the competitive constant value (Ki = 7 µM) was lower than the non-competitive constant value (Ki = 35 µM).In plasma membrane fractions, ATPase activity showed a high sensitivity to the heavy metal. It was non-competitively inhibited by cadmium in a narrow range of micromolar concentrations.  相似文献   

10.
The adenosine 5'-triphosphate (ATP)-linked transhydrogenase reaction, present in the particulate fractions of Escherichia coli, was previously shown to be inhibited in these fractions when the bacteria were treated with colicins K or El. The purpose of this study was to characterized the ATP-linked transhydrogenase reaction and the colicin-caused inhibition of the reaction in purified cytoplasmic membranes. Particulate fractions from bacteria treated or untreated with colicins were separated on sucrose gradients into cell wall membrane and cytoplasmic membrane fractions. The ATP-linked transhydrogenase reaction was found to be exclusively associated with the cytoplasmic membrane fractions. The reaction was inhibited by carbonylcyanide m-chlorophenlhdrazone, dinitrophenol, N,N'-dicyclohexylcarbodiimide, and trypsin. Although the cytoplasmic membrane fractions were purified from the majoriy of the cell wall membrane and its bound colicins, they showed the inhibitory effects of colicins K and El on the ATP-linked transhydrogenase reaction. The inhibition of ATP-linked transhydrogenase reaction induced by the colicin could not be reversed by subjection the isolated membranes to a variety of physical and chemical treatments. Cytoplasmic membranes depleted of energy-transducing adenosine triphosphatase ATPase) complex (coupling factor) lost the ATP-linked transhydrogenase activity. The ATPase complexes isolated from membranes of bacteria treated or untreated with colicins El or K reconstituted high levels of ATP-linded transhydrogenase activity to depleted membranes of untreated bacteria. The same ATPase complexes reconstituted low levels of activity to depleted membranes of the treated bacteria.  相似文献   

11.
The polar organelle, a structure associated with the flaggelar apparatus of bacteria, has been demonstrated in whole unstained cells of the photosynthetic bacterium Rhodopseudomonas palustris. It is subpolarly located close to the surface of the bacterial cell and has a round or ellipsoidal shap. It shows a strong ATPase activity which enables its cytochemical electron microscopical visualization.  相似文献   

12.
Maximum ATPase activities in the cell wall fraction of English ryegrass (Lolium perenne L.) roots were stimulated by foru discrete millimole ratios of (Na++ K+); 40:0, 35:5, 5:35, and 0:40. The optimal pH for stimlation was found to be 6.5. Contrary to data in the literature, Mg2+ inhibited all stimulatory ratios of (Na++ K+) when plants were cultured on an adequate nutrient solution. When grown on a dilute solution, Mg2+ enhanced (Na++ K+)-stimulated ATPase activity in this membrane preparation. The single optimal combined concentration of (Na++ K+) for all stimulatory ratios was 40 MM. The ratios of (Na++ K+) which stimulated ATPase activity in the cell wall fraction varied with position along the root axis such that all rarely existed simultaneously nor did any exist in the terminal millimetre of the root. Both cell wall and microsomal fractions showed stimulation by (Na++ K+) at all the above ratios indicating the possible presence of plasma membrane fragments in both fractions. Only the 35:5 ratio was stimulations were found in the supernatant. Implications of ion-stimulated ATPase involvement in ion transport were drawn from the appearance of ATPase activity at a 40:0 ratio of (Na++ K+) and the disappearance of stimulations at 35:5, 5:35, and 0:40 ratios when plants were moved from a strong (35 mM total concentration) to a dilute (0.75 mM) nutrient solution.  相似文献   

13.
A new method of preparing sealed vesicles from membrane fractions of pumpkin hypocotyls in ethanolamine-containing buffers was used to investigate the subcellular localization of H+-ATPase measured as nigericin-stimulated ATPase. In a fluorescence-quench assay, the H+ pump was directly demonstrated. The H+ pump was substrate-specific for Mg·ATP and 0.1 mM diethylstilbestrol completely prevented the development of a pH. The presence of unsupecific phosphatase hampered the detection of nigericin-stimulated ATPase. Unspecific phosphatases could be demonstrated by comparing the broad substrate specificity of the hydrolytic activities of the fractions with the clear preference for Mg·ATP as the substrate for the proton pump. Inhibitor studies showed that neither orthovanadate nor molybdate are absolutely specific for ATPase or acid phosphatase, respectively. Diethylstilbestrol seemed to be a specific inhibitor of ATPase activity in fractions containing nigericin-stimulated ATPase, but it stimulated acid phosphatase which tended to obscure its effect on ATPase activity. Nigericin-stimulated ATPase had its optimum at pH 6.0 and the nigericin effect was K+-dependent. The combination of valinomycin and carbonylcyanide m-chlorophenylhydrazone had a similar effect to nigericin, but singly these ionophores were much less stimulatory. After prolonged centrifugation on linear sucrose gradients, nigericin-stimulated ATPase correlated in dense fractions with plasma membrane markers but a part of it remained at the interphase. This lessdense part of the nigericin-stimulated ATPase could be derived from tonoplast vesicles because -mannosidase, an enzyme of the vacuolar sap, remained in the upper part of the gradient. Nigericinstimulated ATPase did not correlate with the mitochondrial marker, cytochrome c oxidase, whereas azide inhibition of ATPase activity did.Abbreviations CCCP carbonylcyanide m-chlorophenylhydrazone - DES dethyltilbestrol  相似文献   

14.
The Wachstein and Meisel incubation medium was used to detect ATPase activity in epimastigote, spheromastigote (amastigote), and bloodstream trypomastigote forms of Trypanosoma cruzi. Reaction product, indicative of enzyme activity, was associated with the plasma membrane covering the cell body and the flagellum of the parasite. No reaction product was found in the portion of the plasma membrane lining the flagellar pocket. The plasma membrane-associated ATPase activity was not inhibited by ouabain or oligomycin, was detected in incubation medium without K+, was inhibited by prolonged glutaraldehyde fixation, and its activity was diminished when Mg2+ was omitted from the incubation medium. The Ernst medium was used to detect Na+-K+-ATPase activity in T. cruzi. No reaction product indicative of the presence of this enzyme was detected. Reaction product indicative of 5'-nucleotidase was not detected in T. cruzi. Acid phosphatase activity was detected in lysosomes. These results indicate that a Mg2+-activated ATPase is present in the plasma membrane of T. cruzi and that it can be used as an enzyme marker, provided that the mitochondrial and flagellar ATPases are inhibited, to assess the purity of plasma membrane fractions isolated from this parasite.  相似文献   

15.
We report here the isolation of fractions enriched in components of the myelin-like membranes surrounding the giant axons of the earthworm.Lumbricus terrestris L. The composition and purity of the fractions have been assessed using SDS-protein electrophoresis, Western immunoblots, and electron microscopy. Preliminary enzyme assays indicated that the mitochondrial marker, succinate dehydrogenase, has a similar specific activity distribution in earthworm nerve cord and in mouse liver sedimentation velocity fractions, however, the distribution of the total units of activity among the fractions seems to indicate the existence of smaller mitochondria in earthworm nerve cord compared with mouse liver mitochondria. In earthworm nerve cord fractions, Na+/K+ ATPase and Ca2+/Mg2+ ATPase were found to be enriched exclusively in the fraction containing large plasma and myelin-like membranes, while in the mouse liver fractions, the total units of these two enzymes were found to be distributed broadly among fractions. 5-Nucleotidase activity in the earthworm nerve cord seemed to be restricted to the microsomal fractions (endomembrane network), with a very low activity associated with the large plasma and myelin-like membrane fraction. We have established the presence of keratins or prekeratins in the myelin-like membranes, probably in the form of tonofilaments. However, we could not show that the desmosome-like structures, characteristic of these membranes, are composed of those proteins described for vertebrate epithelial desmosomes.  相似文献   

16.
Icthyophthirius multifiliis has membrane-associated immobilization antigens   总被引:2,自引:0,他引:2  
Sera from fish that survive infections with the ciliated protozoon, Ichthyophthirius multifiliis, immobilize the parasite in vitro. In order to identify cell surface antigens involved in the immobilization response, integral membrane proteins were extracted from tomites with Triton X-114 and used to immunize rabbits. The rabbit antisera immobilized the parasite in vitro and antigens were localized to cell and ciliary plasma membranes by indirect immunofluorescent microscopy. The membrane protein fractions from both whole cells and tomite cilia were characterized by 1- and 2-dimensional SDS-PAGE. A 43,000-dalton (D) glycoprotein with an isoelectric point of 7.0 is the predominant protein in these fractions, comprising 12% and 60% of the total protein of whole cell and ciliary membranes, respectively. Western blot analysis of ciliary proteins with immune rabbit sera indicated that the 43,000-D glycoprotein is the principal antigen.  相似文献   

17.
The effects of norepinephrine in interaction with adrenergic blocking compounds were studied on membrane adenosine triphosphatase (ATPase) activities of human lymphocytes and lymphoblasts. Sodium-potassium ion exchange pump activity was assayed by 86-Rb uptake and ATPase activity of membrane fractions was assayed by ADP and inorganic phosphate generation. The results of these studies indicate that norepinephrine acts by an alpha adrenergic mechanism to enhance membrane sodium-potassium ion exchange pump activity and ATPase activity. The pharmacologic and ionic dissection of the adrenergic sensitivity of ATPase activity indicates that this alpha adrenergic mechanism is related to membrane ATPase activities in addition to that associated with the ion exchange pump. Analysis of fractions obtained by sucrose gradients indicates that the action of norepinephrine is localized in the plasma membrane. Beta adrenergic stimulation was observed to inhibit ATPase activity. The complexity of adrenergic effects on membrane ATPase suggests interactions of hormone modulation of membrane nucleotide cyclases and transport-related ATPase enzymes.  相似文献   

18.
ABSTRACT. Tetrahymena thermophila cells were labeled with sulfosuccinimidyl 6-(biotinamido) hexanoate, a sensitive nonradioactive probe for cell surface proteins, and Western blots of axonemes and ciliary membrane vesicles were compared to cilia fractionated with Triton X-114 (TX-114) in order to study the orientation of ciliary membrane proteins. Greater than 40 ciliary surface polypeptides, from >350 kDa to <20 kDa, were resolved. The major surface 50–60 kDa proteins are hydrophobic and partition into the TX-114 detergent phase. Two high molecular weight proteins, one of which is biotinylated, comigrate with the heavy chains of ciliary dynein, sediment at 14S in a sucrose gradient, and partition into the TX-114 aqueous phase. Fractions containing these high molecular weight proteins as well as fractions enriched in 88-kDa and 66-kDa polypeptides contain Mg2+-ATPase activities. Detergent-solubilized tubulins partition into the TX-114 aqueous phase, are not biotinylated, and must not be exposed to the ciliary surface. The detergent-insoluble axoneme and membrane fraction contains a 36-kDa polypeptide and a portion of the 50-kDa polypeptides that otherwise partition into the detergent phase. These polypeptides could not be solubilized by ATP or by NaCl extraction and appear to be associated with pieces of ciliary membrane tightly linked to the axoneme. The ciliary membrane polypeptides were also tested for Concanavalin A binding and at least sixteen Con A-binding polypeptides were resolved. Of the major Con A-binding polypeptides, three are hydrophobic and partition into the TX-114 detergent phase, three partition into the TX-114 aqueous phase, and four partition exclusively in the detergent-insoluble fraction, which contains axonemes and detergent-resistant membrane vesicles.  相似文献   

19.
1. Dynein proteins were solubilized from demembranated cilia of Paramecium by extraction at high ionic strength. 2. Mg2+-dependent ATPase (EC 3.6.1.3) activity of crude dynein extracts was inhibited by micromolar concentrations of Ca2+ ions. 3. Sepharose 4B chromatography of the crude extracts yields three dynein fractions. The major fraction contains a single protein and is insensitive to Ca2+ ions. Two other fractions, both heterogeneous in composition, show opposing Ca2+ ion sensitivity expressed as a Ca2+ dependent alteration in MgATP2- dependent ATPase activity. The Ca2+ ion sensitive forms show altered electrophoretic mobility on native polyacrylamide gels in the presence and absence of Ca2+ ions. 4. The data provides evidence for a Ca2+ ion dependent concomitant alteration in both molecular form and hydrolytic activity of the dyneins. The results are discussed in terms of a possible molecular mechanism for Ca ion regulation of ciliary activity in terms of the sliding microtubule model.  相似文献   

20.
The swimming behavior of Paramecium is regulated by an excitable membrane that covers the body and cilia of the protozoan. In order to obtain information on the topology and function of ciliary membrane proteins, Paramecia were treated with trypsin, chymotrypsin or pronase and the effects of these proteases were analyzed using electron microscopy, gel electrophoresis of ciliary fractions and behavioral tests. At the concentrations used, trypsin and chymotrypsin had little or no effect on the cells while pronase removed the cell surface coat, visible as fuzzy material covering the cell membrane. The same pronase treatment caused the specific removal of a high molecular weight protein (250 000), as judged by sodium dodecyl sulfate polyacrylamide gel electrophoresis. This protein, the ‘immobilization antigen’, constitutes the major protein of the ciliary membrane. Although the immobilization antigen was removed (or markedly decreased), no marked and reproducible difference was observed in the swimming behavior of the treated cells. We also determined the effects of proteases on isolated ciliary fractions to explore the sidedness of ciliary membrane proteins. A set of proteins relatively resistant to protease digestion was identified; they may be intrinsic membrane proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号