首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary Studies are described employing two erythropoietic systems to elucidate regulatory mechanisms that control both normal erythropoiesis and erythroid differentiation of transformed hemopoietic precursors. Evidence is provided suggesting that normal erythroid cell precursors require erythropoietin as a growth factor that regulates the number of precursors capable of differentiating. Murine erythroleukemia cells proliferate without need of erythropoietin; they show a variable, generally low, rate of spontaneous differentiation and a brisk rate of erythropoiesis in response to a variety of chemical agents. Present studies suggest that these chemical inducers initiate a series of events including cell surface related changes, alterations in cell cycle kinetics, and modifications of chromatin and DNA structure which result in the irreversible commitment of these leukemia cells to erythroid differentiation and the synthesis of red-cell-specific products. Presented in the formal symposium on Mechanisms of Cellular Control at the 28th Annual Meeting of the Tissue Culture Association, New Orleans, Louisiana, June 6–9, 1977. These studies were supported in part by grants and contracts from the National Institutes of Health (GM-14552, CA-13696, CA-18314, NO1-CB-4008 and NO1-CP-1008) and the National Science Foundation (NSF-PCM-75-08696). E.F. and R.C.R. are fellows of the Schultz Foundation; A.B. was supported in part as an American Cancer Society Scholar; J.E.S. was supported by a USPHS Medical Scientist Training Grant; and M.T. and G.M.M. are Hirschl Trust Scholars.  相似文献   

2.
3.
The micropipet aspiration technique and the parallel-plate flow chamber were used to investigate the deformation and detachment properties, respectively, of normal and transformed rat fibroblasts. The normal Cloned Rat Embryo Fibroblasts (CREF) cell line was transfected with the T24ras oncogene to produce the transformed cell line CREF T24. The CREF T24 cell line was transfected with a Kirstenras revertant gene (K-rev 1a suppressor) to produce the CT24HKB1 cells, which have the same morphological characteristics as the cells in the CREF line. The cells utilized in this investigation were derived from the parent cell line CREF, the only differences being the presence or absence of the T24ras oncogene and the Kirstenras revertant gene. The detachment and deformation properties, therefore, could be related to the metastatic phenotype of the cell rather than inherent differences between disparate cell lines. Results indicated that transfecting the CREF cell line with theras oncogene greatly modified the detachment and deformation properties. The CREF T24 cells were more easily detached from normal cells and were 50% more deformable. Both CREF and CT24HKB1 showed similar detachment properties. Based on these results, it is speculated that K-rev la reversedras- induced membrane alterations in these cells. Preliminary investigations have demonstrated that both CREF and CREF T24 cells in different phases of the cell cycle differed in morphological characteristics. However, the majority of the cells within a given cell line showed similar deformation characteristics. Current investigations are focusing on characterization of both detachment and deformation properties of these cells as a function of the cell cycle using synchronization techniques.  相似文献   

4.
Studies are described employing two erythropoietic systems to elucidate regulatory mechanisms that control both normal erythropoiesis and erythroid differentiation of transformed hemopoietic precursors. Evidence is provided suggesting that normal erythroid cell precursors require erythropoietin as a growth factor that regulates the number of precursors capable of differentiating. Murine erythroleukemia cells proliferate without need of erythropoietin; they show a variable, generally low, rate of spontaneous differentiation and a brisk rate of erythropoiesis in response to a variety of chemical agents. Present studies suggest that these chemical inducers initiate a series of events including cell surface related changes, alterations in cell cycle kinetics, and modifications of chromatin and DNA structure which result in the irreversible commitment of these leukemia cells to erythroid differentiation and the synthesis of red-cell-specific products.  相似文献   

5.
6.
The micropipet aspiration technique and the parallel-plate flow chamber were used to investigate the deformation and detachment properties, respectively, of normal and transformed rat fibroblasts. The normal Cloned Rat Embryo Fibroblasts (CREF) cell line was transfected with the T24 ras oncogene to produce the transformed cell line CREF T24. The CREF T24 cell line was transfected with a Kirsten ras revertant gene (K-rev 1a suppressor) to produce the CT24HKB1 cells, which have the same morphological characteristics as the cells in the CREF line. The cells utilized in this investigation were derived from the parent cell line CREF, the only differences being the presence or absence of the T24 ras oncogene and the Kirsten ras revertant gene. The detachment and deformation properties, therefore, could be related to the metastatic phenotype of the cell rather than inherent differences between disparate cell lines. Results indicated that transfecting the CREF cell line with the ras oncogene greatly modified the detachment and deformation properties. The CREF T24 cells were more easily detached from normal cells and were 50% more deformable. Both CREF and CT24HKB1 showed similar detachment properties. Based on these results, it is speculated that K-rev 1a reversed ras-induced membrane alterations in these cells. Preliminary investigations have demonstrated that both CREF and CREF T24 cells in different phases of the cell cycle differed in morphological characteristics. However, the majority of the cells within a given cell line showed similar deformation characteristics. Current investigations are focusing on characterization of both detachment and deformation properties of these cells as a function of the cell cycle using synchronization techniques.  相似文献   

7.
The origin recognition complex (ORC) is a conserved heterohexamer required for the formation of pre-replication (pre-RC) complexes at origins of DNA replication. Many studies of ORC subunits have been carried out in transformed human cell lines but the properties of ORC in primary cells have not been addressed. Here, we compare the expression levels and chromatin-association of ORC subunits in HeLa cells to the primary human cell line, WI38, and a virally transformed derivative of WI38, VA13. ORC subunits 2 and 4 were highly overexpressed in both HeLa and VA13, whereas ORC1 levels were elevated in VA13 but considerably higher in HeLa cells. Cellular extraction revealed that the proportion of ORC2 and ORC4 subunits bound to chromatin was similar in all three cell lines throughout the cell-cycle. In contrast, very little ORC1 was associated with chromatin after extraction of primary WI38 cells, whereas the majority of overexpressed ORC1 in both HeLa and VA13 co-fractionated with chromatin throughout the cell-cycle. Although none of the cell lines displayed significant changes in the levels or chromatin-association of ORC during the cell-cycle, the chromatin-associated fraction of ORC1 displayed an increase in apparent molecular weight during S-phase. Similar experiments comparing immortalized CHO cells to an isogenic virally transformed derivative revealed no changes in levels of ORC subunits but an increase in the proportion of all three ORC subunits associated with chromatin. These results demonstrate a complex influence of cellular immortalization and transformation properties on the expression and regulation of ORC subunits. These results extend the potential link between cancer and deregulation of pre-RC proteins, and underscore the importance of considering the transformation status of cell lines when working with these proteins.  相似文献   

8.
Transformation of 6-d-old embryonic chicken retinal cells by Rous sarcoma virus (RSV) was found to cause significant changes in several cellular properties including adhesiveness, motility, and state of differentiation. The alterations in cell adhesivity were analyzed by means of specific antibodies to the calcium-independent neural cell adhesion molecule, N-CAM. In the RSV-transformed cells the amount of N-CAM present at the cell surface was significantly decreased relative to normal cells, as assessed by immunofluorescent staining, specific immunoprecipitation, and immunoblotting experiments. This decrease was reflected in a marked reduction in N-CAM-mediated adhesiveness measured in vitro. A different, calcium-dependent, adhesive system also present on neurons was not detectably altered by RSV transformation and, in contrast with previous studies on normal neurons, this adhesive system was detected without treatment by proteases. In culture, the transformed cells formed fewer and less compact colonies than the normal retinal cells. Observation of the RSV-transformed retinal cells by time-lapse cinematography confirmed the reduction in adhesiveness and also revealed that the transformed cells were more highly motile than their normal counterparts. In addition, RSV transformation appeared to alter the differentiation of the cultured retinal cells. Immunofluorescent staining studies indicated that in contrast to mature neurons, transformed neural retinal cells expressed the 34,000-mol-wt tyrosine kinase substrate and reduced amounts of a neuron-specific ganglioside recognized by monoclonal antibody A2B5. These characteristics are shared by untransformed glial cells. In double immunofluorescent staining experiments, many cells expressed both N-CAM and pp60src shortly after viral infection, which implies that the N-CAM-positive neuroepithelial cells were transformed by RSV. In addition, a highly purified population of N-CAM-positive neural retinal cells, selected using a fluorescence-activated cell sorter, was rapidly and extensively transformed by RSV at rates comparable to those of the unfractionated population. These results established that the transformed cells were largely derived from RSV-infected neuroepithelial cells rather than from a small population of retinal glial cells present in the primary culture. The findings suggest reconsideration of the possible origin of tumors classified by morphological criteria as derived from glia and raise the possibility that the normal homologue of pp60src may play a role in the commitment of neuroepithelial cells to neuronal or glial differentiation pathways.  相似文献   

9.
A nondestructive method to determine viscoelastic properties of gels and fluids involves an oscillating glass fiber serving as a sensor for the viscosity of the surrounding fluid. Extremely small displacements (typically 1-100 nm) are caused by the glass rod oscillating at its resonance frequency. These displacements are analyzed using a phase-sensitive acoustic microscope. Alterations of the elastic modulus of a fluid or gel change the propagation speed of a longitudinal acoustic wave. The system allows to study quantities as small as 10 microliters with temporal resolution >1 Hz. For 2-100 microM f-actin gels a final viscosity of 1.3-9.4 mPa s and a final elastic modulus of 2.229-2.254 GPa (corresponding to 1493-1501 m/s sound velocity) have been determined. For 10- to 100-microM microtubule gels (native, without stabilization by taxol), a final viscosity of 1.5-124 mPa s and a final elastic modulus of 2.288-2. 547 GPa (approximately 1513-1596 m/s) have been determined. During polymerization the sound velocity in low-concentration actin solutions increased up to +1.3 m/s (approximately 1.69 kPa) and decreased up to -7 m/s (approximately 49 kPa) at high actin concentrations. On polymerization of tubulin a concentration-dependent decrease of sound velocity was observed, too (+48 to -12 m/s approximately 2.3-0.1 MPa, for 10- to 100-microM tubulin). This decrease was interpreted by a nematic phase transition of the actin filaments and microtubules with increasing concentration. 2 mM ATP (when compared to 0.2 mM ATP) increased polymerization rate, final viscosity and elastic modulus of f-actin (17 microM). The actin-binding glycolytic enzyme hexokinase also accelerated the polymerization rate and final viscosity but elastic modulus (2.26 GPa) was less than for f-actin polymerized in presence of 0.2 mM ATP (2.28 GPa).  相似文献   

10.
The calcium-independent mechanism of cell adhesion was studied in normal and polyoma virus-transformed BHK cells. The degree of Ca2+-independent adhesion was greatly reduced in pyBHK cells, whereas CA2+-dependent adhesion occurred to the same degree as in BHK cells. This decrease was shown not to be caused by simple masking of the adhesion sites or by their altered sensitivity to trypsin. Adhesion-blocking antibodies were used to identify molecules responsible for Ca2+-independent adhesion. The antibodies precipitated surface molecules specific for adhesion-competent cells. These have tentatively been named CIDSBHK and CIDSpyBHK. Both were glycoproteins with respective apparent molecular weights of 120K and 125K. CIDSpyBHK incorporated 3H-glucosamine more than CIDSBHK did. Possible modification of the Ca2+-independent adhesion mechanism in pyBHK cells is discussed.  相似文献   

11.
Several aspects of polyamine biosynthesis were compared in low-passage hamster embryo fibroblasts and transformed hamster fibroblasts. Earlier studies had demonstrated a larger and longer-lasting induction of ornithine decarboxylase activity in transformed cells than in hamster embryo fibroblasts. The increases in intracellular polyamine concentrations after serum stimulation were much greater in chemically transformed HE68BP cells than in normal hamster fibroblasts. Treatment of confluent cultures with the tumor promoter, 12-O-tetradecanoylphorbol-13-acetate, greatly potentiated ornithine decarboxylase induction by fresh medium in HE68BP cells, but not in hamster fibroblasts. A similar synergistic effect was observed when transformed cells, but not normal cells, were treated with the combination of insulin and promoter. HE68BP cells were capable of growth in medium containing serum concentrations as low as 0.5%, whereas only concentrations of 5% or more supported the growth of hamster embryo fibroblasts. Low serum concentrations induced ornithine decarboxylase in HE68BP cells but not in normal cells, and a given serum concentration always produced a greater induction of ornithine decarboxylase in transformed than in normal cells.Another enzyme involved in polyamine synthesis, S-adenosyl-L-methionine decarboxylase was induced in normal and transformed cells by serum-containing medium or tetradecanoylphorbol acetate, but in contrast to ornithine decarboxylase, no synergistic effect was seen in transformed cells exposed to the combination of fresh medium and the tumor promoter. A macromolecular inhibitor of ornithine decarboxylase was readily detected in hamster fibroblast cultures treated with high concentrations of putrescine, but little or none of this inhibitor was found in HE68BP cultures. In both cell types, however, serum induction of ornithine decarboxylase was inhibited under conditions of excess putrescine.The results demonstrate several differences between normal and transformed hamster cells in the regulation of polyamine synthesis.  相似文献   

12.
Coupled zones of f-actin and microtubule movement in polarized cells   总被引:1,自引:0,他引:1  
Interactions between the actin and microtubule cytoskeletons occur during cell polarization. Two papers in a recent issue of the Journal of Cell Biology use fluorescent speckle microscopy (FSM) to analyze the relationship between actin and microtubule movements in migrating epithelial cells and in polarizing neuronal growth cones.  相似文献   

13.
Changes in the regulation of collagen post-translational modification in transformed cells were studied in three established human sarcoma cell lines and in chick-embryo fibroblasts freshly transformed by Rous sarcoma virus. The collagens synthesized by all but one of these and by all the control human and chick-embryo cell lines were almost exclusively of types I and/or III. The relative rate of collagen synthesis and the amounts of prolyl hydroxylase activity and immunoreactive protein were markedly low in all the transformed human cell lines. The other enzymes studied, lysyl hydroxylase, hydroxylysyl galactosyltransferase and galactosylhydroxylysyl glucosyltransferase, never showed as large a decrease in activity as did prolyl hydroxylase, suggesting a more efficient regulation of the last enzyme than of the three others. The chick-embryo fibroblasts freshly transformed by Rous sarcoma virus differed from the human sarcoma cells in that prolyl hydroxylase activity was distinctly increased, whereas the decreases in immunoreactive prolyl hydroxylase protein and the three other enzyme activities were very similar to those in the simian-virus-40-transformed human fibroblasts. It seems possible that this increased prolyl hydroxylase activity is only a temporary phenomenon occurring shortly after the transformation, and may be followed by a decrease in activity later. The newly synthesized collagens of all the transformed cells that produced almost exclusively collagen types I and/or III had high extents of lysyl hydroxylation, and there was also an increase in the ratio of glycosylated to non-glycosylated hydroxylysine. The data suggest that one critical factor affecting modification is the rate of collagen synthesis, which affects the ratio of enzyme to substrate in the cell.  相似文献   

14.
We have analysed the effects of oncogenic transformation on the expression of type VI collagen in mesenchymal cells. Synthesis of type VI collagen was almost completely inhibited in fibroblasts transformed by DNA or RNA tumour viruses or in cells derived from spontaneous mesenchymal tumours. Inhibition of type VI collagen synthesis appears, therefore, to be a common phenomenon of transformed mesenchymal cells. When introduced into normal cells by viral vectors, the 'nuclear' oncogene v-myc had an inhibitory effect similar to that of the 'cytoplasmic' oncogene v-src. Fibroblasts infected with a temperature-sensitive strain of Rous sarcoma virus (NY68) produced type VI collagen at the restrictive, but not at the permissive temperature. If such cells were shifted from the permissive to the restrictive temperature, synthesis of the individual subunits of type VI collagen was co-ordinately induced. These results demonstrate that the activity of a single oncogene product is sufficient to inhibit type VI collagen expression.  相似文献   

15.
We developed a new biomaterial for use in cell culture. The biomaterial enabled protein-free cell culture and the recovery of viable cells by lowering the temperature without the aid of supplements. Insulin was immobilized and a thermoresponsive polymer was grafted onto a substrate. We investigated the effect of insulin coupling on the lower critical solution temperature (LCST) of the thermoresponsive polymer, poly(N-isopropylacrylamide-co-acrylic acid), using polymers that were ungrafted, or coupled with insulin. The insulin conjugates were precipitated from an aqueous solution at high temperatures, but they were soluble at low temperatures. The LCST was not significantly affected by the insulin coupling. The thermoresponsive polymer was grafted to glow-discharged polystyrene film and covalently conjugated with insulin. The surface wettability of the conjugate film was high at low temperatures and low at high temperatures. The amounts of immobilized insulin required to stimulate cell growth were 1-10% of the amount of free insulin required to produce the same effect. The maximal mitogenic effect of immobilized insulin was greater than that of free insulin. About half of the viable cells was detached from the film only by lowering the temperature. The recovered cells proliferated normally on new culture dishes. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 53: 339-344, 1997.  相似文献   

16.
17.
Dynamin has been implicated in the formation of nascent vesicles through both endocytic and secretory pathways. However, dynamin has recently been implicated in altering the cell membrane shape during cell migration associated with cytoskeleton-related proteins. Myosin Ⅱ has been implicated in maintaining cell morphology and in cellular movement. Therefore, reciprocal immunoprecipitation was carried out to identify the potential relationship between dynamin Ⅱ and myosin Ⅱ. The dynamin Ⅱ expression level was higher when co-expressed with myosin Ⅱ in Ras transformed NIH3T3 cells than in normal NIH3T3 cells. Confocal microscopy also confirmed the interaction between these two proteins. Interestingly, exposing the NIH3T3 cells to platelet-derived growth factor altered the interaction and localization of these two proteins. The platelet-derived growth factor treatment induced lamellipodia and cell migration, and dynamin Ⅱ inter- acted with myosin Ⅱ. Grb2, a 24 kDa adaptor protein and an essential element of the Ras signaling pathway, was found to be associated with dynamin Ⅱ and myosin Ⅱ gene expression in the Ras transformed NIH3T3 cells. These results suggest that dynamin Ⅱ acts as an intermediate messenger in the Ras signal transduction pathway leading to membrane ruffling and cell migration.  相似文献   

18.
Robert Turgeon 《Planta》1981,153(1):42-48
Crown-gall teratomas are tumors of higher plants with an intrinsic capacity for organogenesis. The growth pattern of tobacco (Nicotiana tabacum L.) teratoma shoots, which is highly aberrant in primary tumors, becomes normal when the shoots are grafted to healthy stock plants. However, certain abnormalities commonly persist; tumors form at the graft junctions, leaves are small, apical dominance is incomplete, the stem and proximal region of the leaf midribs swell excessively, and localized eruptions of neoplastic growth occur on the swollen tissue. Swelling of the shoots is primarily the result of cell hypertrophy in the cortex. Neoplastic divisions do not occur as a general rule; they are restricted, with the exception of tumor formation at the graft junctions, to localized eruptions of teratoid growth on the nodes and leaf midribs where cell hypertrophy is most evident. The histology of the apical meristem and histogenesis of primary tissues is normal, even in grossly distorted shoots. Similarly, there is no evidence of unregulated division in the vascular cambium. It is concluded that cell expansion and division are tightly regulated in meristematic regions of teratoma shoots whereas post-meristematic tissue is prone to excessive hypertrophy and eventual initiation of neoplastic cell division.  相似文献   

19.
Breast cancer frequently metastasizes to bone, resulting in osteolytic lesions. These lesions, formed by activated osteoclasts, cause pain, an increased susceptibility to fractures, and hypercalcemia. It has been shown that breast cancer cells communicate with osteoblasts and subsequently stimulate osteoclast activity; however, little research has focused on understanding the interaction between breast cancer cells and osteoblasts. We recently reported that conditioned medium from MDA-MB-231 breast cancer cells inhibited the differentiation of MC3T3-E1 osteoblasts through the secretion of transforming growth factor beta (TGFbeta). In addition, the breast cancer conditioned medium altered MC3T3-E1 morphology, the pattern of actin stress fibers, and reduced focal adhesion plaques. In the current study, we identified the mechanism used by MDA-MB-231 cells to cause these effects. When MC3T3-E1 osteoblasts were cultured with MDA-MB-231 conditioned medium preincubated with neutralizing antibodies to platelet derived growth factor (PDGF), insulin-like growth factorII (IGFII), and TGFbeta, focal adhesion plaques and actin stress fiber formation were restored. These cytokines were further found to signal through PI3Kinase and Rac. In conclusion, TGFbeta, PDGF, and IGFII might be good therapeutic targets for treating breast cancer-induced osteolytic lesions.  相似文献   

20.
We have investigated the implications of the rise in membrane cholesterol levels on several in vitro and in vivo properties of polyoma virus transformed rat fibroblasts (PyF), with a special emphasis on alpha5beta1 integrin functions. We show that increased membrane cholesterol causes the PyF cells to change their shape and become more bipolar in appearance. These cells also show significantly higher adhesion to the cell-binding domain of fibronectin, increased localization of alpha5beta1 integrin and talin molecules in focal adhesions and a more robust actin cytoskeleton organization. PyF cells with increased membrane cholesterol show reduced growth in vitro and tumours caused by these cells in nude mice are slow growing. These changes in the growth properties of PyF cells are reversible when the cholesterol levels of PyF cells become normal. Our results suggest that changes in membrane cholesterol levels influence the growth and morphological properties of transformed cells, which can be exploited in controlling the growth of tumours in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号