首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pore through which a Paramecium contractile vacuole communicates with the external environment is a 1.2 μm long and 1 μm diameter cylindrical orifice in the pellicle. During diastole, the vacuole:pore junction is closed by a substantial diaphragm which parts to the side at systole. The diaphragm is composed of inner and outer membranes continuous with the vacuole and pore membranes, respectively, and an intervening cytoplasmic layer containing filaments and irregular membranous tubules and vesicles. Microtubules, organized into 2 sets, are an important component of the pore apparatus. One set of ~ 16 microtubules forms an annulus around the pore. These microtubules are organized into a right-handed helix with a pitch of 0.5-0.6 μm, and thus complete slightly more than 2 turns in their course from the level of the diaphragm to the pore outer lip. They appear to be embedded in a layer of dense material immediately adjacent to the pore membrane. The other set consists of 5 or more bands of 10–20 microtubules which radiate in a slight left-handed helix from an insertion at the pore out over the vacuole surface to the ampullae.  相似文献   

2.
The ultrastructure of the bloodstream form of Cryptobia salmositica in rainbow trout was examined during the acute phase of experimental infection. The arrangement of the major groupings of cytoplasmic microtubules originating near the basal bodies is similar to that in other bodonids. The cytostome is reinforced both by pellicular microtubules and an electron-dense plaque. Certain microtubules associated with the flagellar pocket serve as nucleating sites for pellicular microtubules. A flagellar rootlet, consisting of two parallel fibers which are bound together intermittently by electron-dense plaques, curves posteriorly from the basal body of the recurrent flagellum towards the kinetoplast. The basal body associated plaque on the kinetoplast membranes is duplicated at the same time as the basal bodies. Cytoplasmic microtubules are found in association with the plaque and the outer kinetoplastic membrane. A pulsatile vacuole, described for the first time in a hemoparasitic cryptobiid, lies adjacent to the post-flagellar pit. Smaller, interconnected vesicles of the spongiome are continuous with the pulsatile vacuole. Since a pulsatile vacuole occurs not only in free-living and ectoparasitic cryptobiids but in the hemoparasitic (=trypanoplasm) forms as well, this is no longer a character by which the genus Trypanoplasma may be separated from the genus Cryptobia. Possession of this osmoregulatory complex may allow the organism to survive outside of a host and fulfill a monoxenous life cycle, in addition to the usual heteroxenous cycle involving a leech as vector.  相似文献   

3.
SYNOPSIS. Observations of the ultrastructure of marine scuticociliatids, tentatively assigned to the genus Uronema, were made by light, transmission electron, and scanning electron microscopy. Giant, cortically oriented mitochondria filled the subpellicular, intermeridional areas, and were in close association with the epiplasm immediately under the inner alveolar sac membranes. Reconstructions of serial sections of the posterior poles of ciliates indicated that the intermeridional mitochondria could fuse at that point and the entire chondriome might at times be a single organelle. A system of tubules was observed to be intimately associated with the mitochondria in the posterior region. The tubules anastomosed and were directed posteriorly into the region of the nephridial-contractile vacuole system. The outer surfaces were coated with projections arranged in helical patterns. The system may be regarded as a fluid segregation organelle. The tripartite nature of the polar basal body complex observed by silver impregnation was confirmed by transmission electron microscopy. The 3 structures were the basal body of the caudal cilium and 2 parasomal sacs. A prominent ring around the caudal cilium was observed by scanning electron micrcscopy; it is probably responsible for the silver deposition surrounding the polar basal body complex that can be seen by light microscopy of silver-impregnated specimens. The ultrastructure of the nonmotile caudal cilium and its kinetosome was unremarkable, being like that of the motile, somatic cilia. The micronuclear and macronuclear outer membranes were continuous at several sites. Such interconnections explain the intimate physical relationship between the nuclei during interphase in many ciliates, and could be a structural basis for chemical communication between the 2 nuclear types. Within the cytoplasm surrounding the opening of the cytoproct, numerous clear vesicles were observed. Their position and appearance suggested that the cytoproct may be involved in the elimination of solutions as well as solids. Food vacuoles, cortical microtubules, lamellar vesicles, disc-shaped vesicles, mucocysts, and a contractile vacuole and its pore were also observed.  相似文献   

4.
ABSTRACT. Membrane dynamics of the contractile vacuole complex of Paramecium were investigated using conventional electron microscopy of cells so that the vacuoles were serial-sectioned longitudinally and transversely. During systole, vacuolar membrane collapses first into flattened cisternae which undergo further modification into a mass of interconnected small membrane tubules. These tubules retain their connections with the radiating microtubular ribbons; consequently they are found only in the poleward hemisphere. Permanent connections between ampullae and the collapsed vacuole membrane could not be verified nor was a sphincter-like mechanism for closing such a junction observed. Membranes of the ampullae and the collecting canals also collapse to varying extents into arrays of tubules that remain bound to microtubular ribbons during diastole. Thus vacuole, ampullae, and collecting canal membranes all assume tubular forms when internal volume is at a minimum. Having failed to observe a microfilamentous encasement of the vacuole, we suggest that an alternative mechanism for the “contractile” function should be sought. One such is based on fluid volume increase and fluid flow within transiently interconnected tubular membrane systems that cycle between a tubular and a planar membrane form as internal volume is periodically increased and reduced. The driving force for this mechanism might best be sought in the molecular structure of the membranes of the contractile vacuole complex.  相似文献   

5.
LvsA is a Dictyostelium protein that is essential for cytokinesis and that is related to the mammalian beige/LYST family of proteins. To better understand the function of this novel protein family we tagged LvsA with GFP using recombination techniques. GFP-LvsA is primarily associated with the membranes of the contractile vacuole system and it also has a punctate distribution in the cytoplasm. Two markers of the Dictyostelium contractile vacuole, the vacuolar proton pump and calmodulin, show extensive colocalization with GFP-LvsA on contractile vacuole membranes. Interestingly, the association of LvsA with contractile vacuole membranes occurs only during the discharge phase of the vacuole. In LvsA mutants the contractile vacuole becomes disorganized and calmodulin dissociates from the contractile vacuole membranes. Consequently, the contractile vacuole is unable to function normally, it can swell but seems unable to discharge and the LvsA mutants become osmosensitive. These results demonstrate that LvsA can associate transiently with the contractile vacuole membrane compartment and that this association is necessary for the function of the contractile vacuole during osmoregulation. This transient association with specific membrane compartments may be a general property of other BEACH-domain containing proteins.  相似文献   

6.
Manfred Hauser 《Chromosoma》1972,36(2):158-175
Electron microscope studies on the premetaphase stages of micronuclear divisions of Paracineta limbata and Ichthyophtirius multifiliis showed that spindle material also exists during interphase. In the case of I. multifiliis scattered microtubule fragments persist in the nuclear space; in P. limbata the micronuclei contain a small paracrystalloid which is suggested to be microtubular protein. Wide microtubules, varying in diameter from 300 to 400 Å develop during intranuclear prophase near the nuclear envelope in both cases. There are good reasons to assume that they function as a kind of stem body during the enlargement of the surface area of the nuclear envelope. Later micronuclear prophase stages of both species show a some-what different development. In I. multifiliis, there are scattered groups of short microtubular segments, partly in parallel array, whereas in P. limbata the wide tubules are transformed into normal microtubules of 180–200 Å diameter. The nuclei of both species are similar at late prophase and prometaphase stages. Bundles of interpolar microtubules run between the chromosomes, and single microtubules, presumably induced by the chromosomes, cross them at different angles. The chromosome-induced microtubules appear a short time after the interpolars. At prometaphase stage all microtubules show a highly parallel arrangement and therefore it is suggested that chromosomal tubules reach their final polar orientation by the action of cross-bridges.  相似文献   

7.
ABSTRACT. Allantosoma intestinalis, a suctorian ciliate isolated from the intestine of the horse, was studied utilizing light and electron optical methods. These small sausage-shaped organisms have a varying number of tentacles (between one and 12) located at each extremity of the body. The microtubular axoneme of each tentacle in cross-section consists of two files of microtubules arranged in a daisy-like configuration. Haptocysts occur in the tentacle shaft, abutted to the plasma membrane of the knob of the tentacle, and in the cell body. The haptocysts are bottle-shaped, with prominent annular striations around their midportion. The cell is covered by three membranes, an outer plasma membrane, an outer alveolar, and an inner alveolar membrane. A thin epiplasmic layer is found beneath the inner alveolar membrane, and a single row of microtubules underlies the epiplasm. The subpellicular microtubules are arranged parallel to each other forming a corset around the cell along the long axis: such a system is not characteristic of suctorians. A field of diminutive kinetosomes (each 180 nm long, max. of 15 per field), lacking cilia, was found below the cortex. The function of these prokinetosomes is unknown. A ciliated swarmer has not been observed, only the nonciliated adult. The characteristics of Allantosoma are compared with those of other suctorian genera.  相似文献   

8.
SYNOPSIS. The adult Tokophrya infusionum does not possess cilia, but has 20–30 barren basal bodies arranged in 6 short rows adjacent to the contractile vacuole pore. During reproduction, which is by internal budding, the contractile vacuole sinks into the parent along with the invaginating membranes that form the embryo and the wall of the brood pouch. The 6 rows of basal bodies radiate away from the pore and elongate to form 5 long ciliary rows, that encircle the anterior half of the embryo, and 1 short row at the posterior end. The contractile vacuole pore, along with several barren basal bodies, remains in the parent when the embryo is completed. The pore rises to the surface when the embryo is born. New basal bodies are then formed in the parent to replace those which were incorporated into the embryo, and formation of another embryo may begin. The cilia of the embryo are partially resorbed 10 min after the start of metamorphosis, with depolymerization of the ciliary microtubules. Later, the cilia and most of the basal bodies disappear completely, except for a group of barren basal bodies near the embryo's contractile vacuole pore, which form 6 rows and serve as an anlage for the basal bodies and cilia that arise during embryogenesis. There is, therefore, an organized infraciliature in Suctoria throughout their life cycle, and a distinct continuity of basal bodies across the generations.  相似文献   

9.
ABSTRACT. Trichophrya collini has a polygonal, dorsoventrally flattened body (up to 75 μm diam.), with capitate tentacles arranged in 1–3 rows within peripheral fascicles. There is a central polymorphic macronucleus, an associated micronucleus, and numerous peripheral contractile vacuoles with ventral discharge pores. The cell has a multilayered cortex and the cytoplasm contains suctorian organelles such as crescentic bodies, elongate dense bodies, and haptocysts. The highly contractile tentacles have an axoneme with an outer ring of 24 microtubules separated into six groups and an inner ring of six curved lamellae, each with five microtubules. The lamellae at the distal and proximal ends of the axoneme are arranged in a helix, and the outer ring microtubules are joined in a distal connective sheath. In the apical knob of the tentacle, the haptocysts are borne on a central capsule, Reproduction is by endogenous budding to produce a single oval-shaped swarmer, with equatorial ciliature, which metamorphoses within 3 h. These observations suggest that this organism, previously known as Heliophrya collini Saedeleer & Tellier, is synonymous with Platophrya rotunda Gönnert, Craspedophrya rotunda Rieder, and Heliophrya rotunda Matthes. Its endogenous mode of budding assigns it to the genus Trichophrya. but it is distinct from Trichophrya rotunda Hentschel, and should be reclassified to Trichophrya collini (Saedeleer & Tellier).  相似文献   

10.
ABSTRACT. In ciliates, calmodulin (CaM), as in other cells, has multiple functions, such as activation of regulatory enzymes and modulating calcium‐dependent cellular processes. By immunogold localization, CaM is concentrated at multiple sites in Paramecium. It is seen scattered over the cytosol, but bound to its matrix, and is concentrated at the pores of the contractile vacuole complexes and with at least three microtubular arrays. It was localized peripheral to the nine‐doublet microtubules of the ciliary axonemes. The most striking localization was on the akinetic side only of the cytopharyngeal microtubular ribbons opposite the side where the discoidal vesicles, acidosomes and the 100‐nm carrier vesicles bind and move. CaM was also present at the periphery of the postoral microtubular bundles along which the early vacuole moves and was associated with the cytoproct microtubules that guide the spent digestive vacuoles to the cytoproct. It was not found on the membranes of, or in the interior of nuclei, mitochondria, phagosomes, and trichocysts, and was only sparsely scattered over the cytosolic sides of discoidal vesicles, acidosomes, lysosomes, and digestive vacuoles. Together the associations with specific microtubular arrays and the effects of trifluoperazine and calmidazolium indicate that CaM is involved (i) in vesicle transport to the cytopharynx area for vacuole formation and subsequent vacuole acidification, (ii) in early vacuole transport along the postoral fiber, and (iii) in transporting the spent vacuole to the cytoproct. Higher CaM concentrations subjacent to the cell's pellicle and close to the decorated tubules of the contractile vacuole complex may support a role for CaM in ion traffic.  相似文献   

11.
Microsomal membranes of Chlamydomonas reinhardtii possess PPase and V-ATPase activities. By immunogold labelling we have shown that H+-pyrophosphatase (PPase) is localized to membranes of lytic and contractile vacuoles of Chlamydomonas, in which the density of antigen in the latter is much higher. In addition, PPase is conspicuously present in trans cisternae and transpole elements of the Colgi apparatus. Such a distribution for PPase has hitherto not been reported. A positive in situ identification for PPase at the plasma membrane, including the flagellar membrane, was also made, and has also been confirmed by Western blotting and activity measurements on isolated plasma membranes. V-ATPase antisera which cross react with polypeptides of this transport complex from maize roots failed to recognize anything in Western blots of Chlamydomonas microsomal membranes. Thus immunogold labelling for V-ATPase was not possible with Chlamydomonas. On the other hand, surfaces of contractile vacuole membranes as revealed by deepetching were covered by conspicuous 9 ? 11.5 nm diameter smooth particles which had a central hole. These were very similar to those previously identified by Heuser et al., (1993) as the V,-head of V-ATPase in Dictyostelium contractile vacuoles. Another type of membrane image, designated “intermediate-sized vesicle”, was found associated with the contractile vacuole. It was characterized by densely-packed 6 ? 7.5nm diameter polygonal particles, which upon rotation analysis showed both 5- and 6-fold symmetries, also with a central hole. These particles are interpreted as representing either PPase complexes or the V0 body of the V-ATPase in etched fractured membrane surfaces. We have incorporated these findings into a model of contractile vacuole function.  相似文献   

12.
Summary The ultrastructure ofAphanomyces euteiches during the periods of zoospore motility, encystment, and germination has been studied. The motile spore has two heterokont flagella inserted laterally into the groove of the zoospore body where each is attached to a kinetosome. The kinetosomes and flagella are anchored into the zoospore body by rootlets comprised of two rows of microtubules with up to 12 microtubules in the outer row and are attached by fine threads to a striate fiber bundle. Secondary microtubules are attached at right angles at regular intervals along the rootlets. An unidentified body, 1.25m in diameter, containing helical fibers 16 nm in diameter is present in each zoospore. This body is situated near the two kinetosomes on the side of the pyriform nucleus opposite the contractile vacuole. The Golgi complex is between the nucleus and the contractile vacuole. The latter is surrounded by a 0.5–1.0m wide zone of Golgi proliferated vesicles. Ribosomes are generally absent from this region. Endoplasmic reticulum containing tubules within the expanded cisternae are also present. Vesicles with striated electron opaque inclusions and vesicles containing a granular cortex and center that developed in previous stages of zoosporogenesis were also present. During encystment of the zoospore the latter vesicles disappear. The two flagella are shed at this time leaving a membrane-bounded granular knob protruding from each of the kinetosome terminal plates. The contractile vacuole becomes disorganized and the zoospore assumes a spherical shape. Cyst wall deposition begins immediately and is completed in 30 minutes. The spore begins to germinate 1 hour following initiation of encystment with the appearance of a bulge in the cyst wall which elongates into a germ tube. Mitotic nuclear division follows.Research supported by the College of Agricultural and Life Sciences Station Project No. 1281.Research assistant and Professor. The advice and assistance of G. A. deZoeten, G. R.Gaard, and S.Vicen are most gratefully acknowledged.  相似文献   

13.
14.
Khawkinea quartana, a naturally occurring colorless homologue of Euglena, was examined with the electron microscope. The organism is biflagellate though only one of the 2 flagella emerges from the anterior reservoir. The pellicular strips covering the body of the organism are supported by microtubules which are continuous in part with microtubules bordering the reservoir. Additional rows of microtubules are found associated with the kinetosomes. An eyespot is located in the wall of the reservoir and, adjacent to it, the contractile vacuole. The nucleus, mitochondria, and Golgi complexes are similar to those described in other euglenoid flagellates. The food reserve is paramylon. The study supports the phylogenetic origin of Khawkinea from pigmented Euglena through the loss of chloroplasts.  相似文献   

15.
SYNOPSIS. Cortical ultrastructure of the scuticociliates Dexiotricha media and Dexiotricha colpidiopsis was investigated. The following elements of the somatic cortex were studied: the cell membrane, alveolar membranes and the epiplasm, kinetodesmal fibers, postciliary and transverse microtubular ribbons, and transverse fibers associated with single and paired kinetosomes; mitochondria and single microtubules located in interkinetal ridges; mature and early extrusion stages of mucocysts: the expulsion vacuole pore and tube, the nephridioplasm and the cytoproct. In the buccal cortex, the paroral kinety-ribbed wall complex, the 3 polykineties, and the cytostome-cytopharynx were investigated. Comparative survey of ciliate ultrastructure indicates 2 principal orientation patterns for kinetodesmal and postciliary fibers, recognition of which leads to reevaluation of the theory of paroral kinety formation and the ideas of homology based on this theory. Ultrastructurally, the scuticociliates are not distinct from tetrahymenines and peniculines; the 3 groups appear to be 1 assemblage.  相似文献   

16.
ABSTRACT. This study describes the ultrastructure of the somatic cortex of Prorodon aklitolophon and Prorodon teres. the meridionally arranged somatic kineties of both species can be separated into two parts: a short anterior part, which consists of a few somatic dikinetids (in which both kinetosomes are ciliated), and a longer posterior consisting of monokinetids. the somatic monokinetids are associated with a convergent postciliary microtubular ribbon, a transverse microtubular ribbon flatly inserted in front of the kinetosome, a short and steeply extending kinetodesmal fibre attached to kinetosomal triplet 5 and 7, and a desmose anterior to triplet 3. From this desmose, two to five prekinetosomal microtubules originate and extend anteriorly. the posterior kinetosome of the somatic dikinetids is associated with the same microfibrillar and microtubular structures as the somatic monokinetid, except that no prekinetosomal microtubules originate from the desmose. the anterior kinetosome has a single postciliary microtubule and a tangentially oriented transverse microtubular ribbon. the permanent collecting canals of the unique contractile vacuole system extend parallel and adjacent to the somatic kinetics of Prorodon . the collecting canals are supported by the prekinetosomal microtubules. A similarly organized contractile vacuole system is not yet known from any other ciliate group. One of the most surprising results of this investigation was finding a significant similarity between the somatic dikinetid pattern of Prorodon and the colpodid dikinetid pattern. A hypothesis is presented to illustrate the evolution of the somatic kinetid patterns in colpodid and prostomatid ciliates.  相似文献   

17.
ABSTRACT. Examination of the anterior region of Spirochona gemmipara by combined use of interference contrast microscopy, protargol staining, and transmission electron microscopy has revealed the existence of a cytoproctal apparatus and of an excretory system (contractile vacuole complex), that have often been confused with each other and with the cytopharynx. The cytoproctal apparatus is comprised of an external orifice located at the base of the collar, a cytoproctal canal that is about 20 μm long and delimited by a pellicle with alveoli, and the cytoproct itself. The contractile vauole complex is composed of 6–8 sinuous canals, up to 20 μm long, each of which opens to the exterior by a pore situated among the ciliature of the collar. An ostium, which is the internal orifice of each canal, is connected with a contractile vacuole that is contiguous with a well developed tubular spongiome. Although deeply set, the cytoproct and ostia of S. gemmipara do not appear to be basically different from the corresponding structures described in Paramecium and Tetrahymena.  相似文献   

18.
19.
In a ciliate Paramecium, the presence of water channels on the membrane of contractile vacuole has long been predicted by both morphological and physiological data, however, to date either the biochemical or the molecular biological data have not been provided. In the present study, to examine the presence of aquaporin in Paramecium, we carried out RT-PCR with degenerated primers designed based on the ParameciumDB, and an aquaporin cDNA (aquaporin 1, aqp1) with a full-length ORF encoding 251 amino acids was obtained from Paramecium multimicronucleatum by using RACE. The deduced amino acid sequence of AQP1 had NPA-NPG motifs, and the prediction of protein secondary structure by CNR5000 and hydropathy plot showed the presence of six putative transmembrane domains and five connecting loops. Phylogenetic analysis results showed that the amino acid sequence of AQP1 was close to that of the Super-aquaporin group. The AQP1-GFP fusion protein clearly demonstrated the subcellular localization of AQP1 on the contractile vacuole complex, except for the decorated spongiome membrane. The functional analyses of aqp1 were done by RNA interference-based gene silencing, using an established feeding method. The aqp1 was found to be crucial for the total fluid output of the cell, the function of contractile vacuole membranes.  相似文献   

20.
Microsporidia are obligate intracellular parasites with extremely reduced genomes and a dependence on host‐derived ATP. The microsporidium Encephalitozoon cuniculi proliferates within a membranous vacuole and we investigated how the ATP supply is optimized at the vacuole–host interface. Using spatial EM quantification (stereology), we found a single layer of mitochondria coating substantial proportions of the parasitophorous vacuole. Mitochondrial binding occurred preferentially over the vegetative ‘meront’ stages of the parasite, which bulged into the cytoplasm, thereby increasing the membrane surface available for mitochondrial interaction. In a broken cell system mitochondrial binding was maintained and was typified by electron dense structures (< 10 nm long) bridging between outer mitochondrial and vacuole membranes. In broken cells mitochondrial binding was sensitive to a range of protease treatments. The function of directly bound mitochondria, as measured by the membrane potential sensitive dye JC‐1, was indistinguishable from other mitochondria in the cell although there was a generalized depression of the membrane potential in infected cells. Finally, quantitative immuno‐EM revealed that the ATP‐delivering mitochondrial porin, VDAC, was concentrated atthe mitochondria‐vacuole interaction site. Thus E. cuniculi appears to maximize ATP supply by direct binding of mitochondria to the parasitophorous vacuole bringing this organelle within 0.020 microns of the growing vegetative form of the parasite. ATP‐delivery is further enhanced by clustering of ATP transporting porins in those regions of the outer mitochondrial membrane lying closest to the parasite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号