首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 456 毫秒
1.
In order to investigate the relationship between host and symbiosis in the luminous marine fish, Physiculus japonicus, the bacterial lipopolysaccharides (LPS) of symbiotic luminous bacteria were compared serologically and electrophoretically. Five symbiotic luminous bacteria (PJ strains) were separately isolated from five individuals of this fish species caught at three points, off the coasts of Chiba, Nakaminato, and Oharai. LPS preparations were made from these bacteria by Westphal's phenol-water method and highly purified by repeated ultracentrifugation. These LPSs contained little or no 2-keto-3-deoxyoctonate and had powerful mitogenic activity. In sodium dodecylsulfate polyacrylamide gel electrophoresis, these PJ-1 to -5 LPSs were separated by their electrophoretic patterns into three groups; the first group included PJ-1 and PJ-4, the second group PJ-2 and PJ-3, and the third group PJ-5 alone. The results agreed with those of the double immunodiffusion test; precipitin lines completely coalesced within each group but not with other groups. In immunoelectrophoresis, one precipitin line was observed between anti PJ-2 LPS serum and PJ-5 LPS but the electrophoretic mobility of PJ-5 LPS was clearly different from that of the PJ-2 LPS group. Furthermore, in a 50% inhibition test with PJ-2 LPS by the passive hemolysis system, the doses of PJ-2 LPS, PJ-3 LPS, and PJ-5 LPS required for 50% inhibition (ID50) in this system were 0.25, 0.25, and 21.6 micrograms/ml for each alkali-treated LPS, respectively, and the ID50's of both PJ-1 LPS and PJ-4 LPS were above 1,000 micrograms/ml. These results indicate that PJ-5 LPS has an antigenic determinant partially in common with LPS from the PJ-2 group but not with LPS from the PJ-1 group and that the symbiotic luminous bacterium PJ-5 is more closely related to the PJ-2 group than to the PJ-1 group. These results show that the species Physiculus japonicus is symbiotically associated with at least three immunologically different strains of luminous marine bacteria in its specialized light organ.  相似文献   

2.
The chemical and biological properties of the lipopolysaccharide (LPS) isolated from a marine bacterium, Photobacterium phosphoreum PJ-1, were studied. This LPS consists of 40.6% carbohydrate, 27.3% fatty acid, 0.2% 2-keto-3-deoxyoctonate (KDO) and other components. One characteristic of this LPS is its small amount of KDO, the basic component of the usual LPS. Electrophoresis in sodium dodecylsulfate polyacrylamide gel revealed at least two staining bands for carbohydrates. These bands were continuous and broad, and showed rapid electrophoretic mobility which corresponded closely to the fastest moving band of LPS from Salmonella typhimurium. This LPS preparation had adjuvant activity, lethality for ddY mice, and the ability to gel Limulus amebocyte lysate, and the strength of these activities corresponded closely to those of LPS preparations from Escherichia coli 0111:B4 and S. typhimurium. In the test for lethality of the LPS for ddY mice, the lethal action appeared in two phases depending on the dose used for intravenous (i.v.) injection : the early lethal action appeared within 30 min after injection of 250 μg or less, and the late lethal action occurred gradually after 16 hr at doses of 500 μg or more. The total (both phases) LD50 of this LPS (i.v.) for ddY mice was 265 μg per mouse and in only the late phase it was 500 μg. These results show that in spite of structual differences in regard to KDO content, LPS from P. phosphoreum PJ-1 has some biological properties similar to those of LPS from E. coli 0111:B4 and S. typhimurium but it shows no immunological cross-reaction with other LPS.  相似文献   

3.
Luminous bacteria and light emitting fish: ultrastructure of the symbiosis   总被引:2,自引:0,他引:2  
The luminescent fish Monocentris japonicus uses symbiotic luminous bacteria as a source of light. These bacteria live in light organs, complex tissue compartments, consisting of richly vascularized tubules or canals (in which the bacteria are cultured) lined with mitochondria-rich epithelial cells. The structure is consistent with a proposed model of symbiosis in which nutrients and oxygen are supplied by the vertebrate blood (vascular system). The nutrients, oxidized by the bacteria for growth and light production, are returned in part to the fish as pyruvate, which by reacting with mitochondrial oxygen regulates the light organ oxygen tensions. The luminous bacteria provide steady light that is modulated by passage through the melanocyte-containing dermis of the fish. Both the fish and the bacteria are highly adapted for their symbiotic coexistence.  相似文献   

4.
Vibrio fischeri and Lucibacterium harveyi constituted 75 of the 83 luminous bacteria isolated from Sargasso Sea surface waters. Photobacterium leiognathi and Photobacterium phosphoreum constituted the remainder of the isolates. Luminescent bacteria were recovered at concentrations of 1 to 63 cells per 100 ml from water samples collected at depths of 160 to 320 m. Two water samples collected at the thermocline yielded larger numbers of viable, aerobic heterotrophic and luminous bacteria. Luminescent bacteria were not recovered from surface microlayer samples. The species distribution of the luminous bacteria reflected previously recognized growth patterns; i.e., L. harveyi and V. fischeri were predominant in the upper, warm waters (only one isolate of P. phosphoreum was obtained from surface tropical waters).  相似文献   

5.
Luminous bacteria are isolated from both Hydrozoa and Bryozoa with chitinous structures on their surfaces. All the specimens of the examined hydroid species (Aglaophenia kirchenpaueri, Aglaophenia octodonta, Aglaophenia tubiformis, Halopteris diaphana, Plumularia setacea, Ventromma halecioides), observed under blue light excitation, showed a clear fluorescence on the external side of the perisarc (chitinous exoskeleton) around hydrocladia. In the bryozoan Myriapora truncata, luminous bacteria are present on the chitinous opercula. All the isolated luminous bacteria were identified on the basis of both phenotypic and genotypic analysis. The isolates from A. tubiformis and H. diaphana were unambiguously assigned to the species Vibrio fischeri. In contrast, the isolates from the other hydroids, phenotypically assigned to the species Vibrio harveyi, were then split into two distinct species by phylogenetic analysis of 16S rRNA gene sequences and DNA–DNA hybridization experiments. Scanning electron microscopy analysis and results of culture-based and culture-independent approaches enabled us to establish that luminous vibrios represent major constituents of the bacterial community inhabiting the A. octodonta surface suggesting that the interactions between luminous bacteria and the examined hydrozoan and bryozoan species are highly specific. These interactions might have epidemiological as well as ecological implications because of the opportunistic pathogenicity of luminous Vibrio species for marine organisms and the wide-distribution of the hydrozoan and bryozoan functioning as carriers.  相似文献   

6.
Distribution of planktonic luminous bacteria in relation to environmental parameters was investigated at two stations located in the Vellar Estuary. Luminous microflora showed a pronounced seasonal cycle with very low counts during monsoon months followed by an increase in post monsoon and peak counts during summer. The population density of these procaryotes was remarkably high ranging from 3.5 to 33.1 colony forming units per ml. They constituted 2.1 to 52.1 % of the total bacterial counts. Salinity appeared to govern the distribution of luminous procaryotes as their counts corresponded well with fluctuations in salinity. Taxonomic affiliation of the isolates revealed predominance of Vibrio harveyi. Vibrio fischeri and Photobacterium leiognathi exhibited sparse distribution.  相似文献   

7.
Luminous bacteria were isolated from oceanic water samples taken throughout the upper 1,000 m and ranged in density from 0.4 to 30 colony-forming units per 100 ml. Generally, two peaks in abundance were detected: one in the upper 100 m of the water column, which consisted primarily of Beneckea spp.; and a second between 250 and 1,000 m, which consisted almost entirely of Photobacterium phosphoreum. The population of P. phosphoreum remained relatively stable in abundance at one station that was visited three times over a period of 6 months. However, the abundance of luminous Beneckea spp. isolated from the upper waters fluctuated considerably; they were, as high as 30 colony-forming units per 100 ml in the spring and were not detected in the winter. Water samples from depths of 4,000 to 7,000 m contained less than 0.1 luminous colony-forming unit per 100 ml. The apparent vertical stratification of two taxa of oceanic luminous bacteria may reflect not only differences in physiology, but also depth-related, species-specific symbiotic associations.  相似文献   

8.
The presence of lectins on a cell surface was demonstrated for 70 cultures of luminous bacteria using hemagglutination reactions. It was shown that hemagglutination of luminous bacteria is inhibited by glucose, maltose, fructose, mannose, and N-acetyl-D-glucosamine. The differences in the inhibition of hemagglutination of luminescent and nonluminescent (spontaneous mutants) symbiotic cultures by N-acetyl-D-galactosamine were revealed. The fact that N-acetyl-D-galactosamine inhibits hemagglutination of the luminescent symbiotic bacteria but does not inhibit hemagglutination of the symbiotic cultures lacking luminescence suggests that lectins with N-acetyl-D-galactosamine specificity are possibly involved in the formation and functioning of the symbiosis of luminous bacteria with marine animals possessing luminous organs.  相似文献   

9.
Numbers of luminous bacteria were counted at three stations of the brackish water ecosystem of the western Baltic Sea from July 1985 to July 1986. Additional samples were taken during three cruises from stations at the North Atlantic Ocean, the Norwegian Sea and adjacent marine areas. — In Kiel Bight (western Baltic) values varied between 0 and 68,000 luminous cfu 1−1. With exception of the coastal station a distinct seasonal distribution pattern was shown in a water depth of 20 m: high numbers found in summer were opposed to low numbers in winter, the peaks being rather high in comparison to those of other areas. Statistical analysis showed that the results of 20 m were significantly different from those of 0 and 10 m depth; however, there was no correlation with temperature and salinity. Taxonomic studies revealed that the population consisted primarily of the genus Photobacterium. — The optimum of salinity was not a brackish but a marine one and was about 30% for the majority of the strains tested. A smaller number of strains grew best at a salinity between 10 and 15%. Optima of temperature ranged from 15 to 20 °C for most of the test strains. — Taxonomic analysis was also performed with luminous strains from marine areas adjacent to the western Baltic Sea, Photobacterium being the dominant genus here, too. Luminous bacteria were also enriched from the external surface and the gut contents of whitings (Merlangius merlangus) and cods (Gadus morhua). A model is proposed which explains the distribution pattern found. According to this, the gut-dwelling luminous bacteria are transported by their hosts from the North Sea into the western Baltic Sea. Here they are released into the environment, thus inhabiting another niche.  相似文献   

10.
Bacteria forming light-organ symbiosis with deep-sea chlorophthalmid fishes (Aulopiformes: Chlorophthalmidae) are considered to belong to the species Photobacterium phosphoreum. The identification of these bacteria as P. phosphoreum, however, was based exclusively on phenotypic traits, which may not discriminate between phenetically similar but evolutionarily distinct luminous bacteria. Therefore, to test the species identification of chlorophthalmid symbionts, we carried out a genomotypic (repetitive element palindromic PCR genomic profiling) and phylogenetic analysis on strains isolated from the perirectal light organ of Chlorophthalmus albatrossis. Sequence analysis of the 16S rRNA gene of 10 strains from 5 fish specimens placed these bacteria in a cluster related to but phylogenetically distinct from the type strain of P. phosphoreum, ATCC 11040T, and the type strain of Photobacterium iliopiscarium, ATCC 51760T. Analysis of gyrB resolved the C. albatrossis strains as a strongly supported clade distinct from P. phosphoreum and P. iliopiscarium. Genomic profiling of 109 strains from the 5 C. albatrossis specimens revealed a high level of similarity among strains but allowed identification of genomotypically different types from each fish. Representatives of each type were then analyzed phylogenetically, using sequence of the luxABFE genes. As with gyrB, analysis of luxABFE resolved the C. albatrossis strains as a robustly supported clade distinct from P. phosphoreum. Furthermore, other strains of luminous bacteria reported as P. phosphoreum, i.e., NCIMB 844, from the skin of Merluccius capensis (Merlucciidae), NZ-11D, from the light organ of Nezumia aequalis (Macrouridae), and pjapo.1.1, from the light organ of Physiculus japonicus (Moridae), grouped phylogenetically by gyrB and luxABFE with the C. albatrossis strains, not with ATCC 11040T. These results demonstrate that luminous bacteria symbiotic with C. albatrossis, together with certain other strains of luminous bacteria, form a clade, designated the kishitanii clade, that is related to but evolutionarily distinct from P. phosphoreum. Members of the kishitanii clade may constitute the major or sole bioluminescent symbiont of several families of deep-sea luminous fishes.  相似文献   

11.
Four species of luminous bacteria, Photobacterium phosphoreum, P. leiognathi, P. fischeri and Beneckea harveyi (two strains of each), were shown to synthesize luciferase anaerobically. One of these, P. phosphoreum, produced as much luciferase anaerobically as it did aerobically, and all four species were found to grow almost equally rapidly under the two sets of conditions. Previous work with B. harveyi and P. fischeri had shown that aerobic luciferase synthesis can proceed only after an inhibitor in the complex medium has been removed and a species-specific autoinducer secreted. All strains tested also removed the inhibitor and secreted an autoinducer anaerobically. The small amount of luciferase produced anaerobically by some strains is thus apparently not due either to lack of removal of inhibitor or to insufficient production of autoinducer but may involve an oxygen-dependent control mechanism.Abbreviations LU light units - OD optical density  相似文献   

12.
Summary One-dimensional sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) of reduced total protein extracts from the endosperm of hexaploid wheat revealed a new set of faintly-stained bands, having slower electrophoretic mobility than the high-molecular-weight (HMW) glutenin subunits. These new bands have been termed the E group of glutenin subunits. Analysis of aneuploid stocks of Chinese Spring wheat has shown that three of the E bands, in order of increasing electrophoretic mobility, are controlled by genes on the short arms of chromosomes 1B, 1A and 1D, respectively. The E bands are expressed only in the presence of the long arm of chromosome 1B indicating an interaction between two or more genes involved in their production in wheat endosperm. The gene on the short arm of chromosome 1D controlling an E subunit recombined freely with Tri-D1 and the centromere but not at all with Gli-D1, indicating additional complexity at the Gli-DI locus in wheat.  相似文献   

13.
Hybridization probes specific for the luxA genes of four groups of luminous bacteria were used to screen luminous isolates obtained from the Persian Gulf, near Al Khiran, Kuwait Nine of these isolates were identified as Vibrio harveyi, a commonly encountered planktonic isolate, while three others showed no hybridization to any of the four probes (V. harveyi, Vibrio fischeri, Photobacterium phosphoreum, or Photobacterium leiognathi) under high-stringency conditions. Polymerase chain reaction amplification was used to prepare a luxA probe against one of these isolates, K-1, and this probe was screened under high-stringency conditions against a collection of DNAs from luminous bacteria; it was found to hybridize specifically to the DNA of the species Vibrio splendidus. A probe prepared against the type strain of V. splendidus (ATCC 33369) was tested against the collection of luminous bacterial DNA preparations and against the Kuwait isolates and was found to hybridize only against the type strain and the three unidentified Kuwait isolates. Extensive taxonomic analysis by standard methods confirmed the identification of the 13 isolates.  相似文献   

14.
The present paper deals with the morphology of the luminous organ of the squid Loligo duvauceli, caught in the sea off Indonesia and Thailand. Two luminous organs are situated on the ventral surface of the ink sac, near the anus. Each organ consists of a luminous sac divided into numerous discrete chambers containing bacteria. On the ventral side the organ is bordered by a lens-like structure, consisting of muscle cells. On the remaining sides the bacterial chambers are limited by a cup-shaped reflector layer with numerous parallel lamellae. The reflector separates the bacterial chamber from the ink sac. A ciliated channel connects the interior of the bacterial chamber with the mantle cavity.  相似文献   

15.
Luminous bacteria in the Mediterranean Sea and the Gulf of Aqaba-Elat have different distribution patterns. In the Mediterranean Sea, Beneckea harveyi is present all year round, with different subtypes alternating in summer and winter; Photobacterium fischeri was only present during the winter. In the Gulf of Elat, P. leiognathi is present throughout the water column in similar densities during the entire year. This constancy in distribution is presumably due to the near-constancy in water temperature. In summer, Photobacterium leiognathi is replaced by B. harveyi in coastal surface waters. In the hypersaline Bardawil lagoon, only B. harveyi types are present. P. fischeri, a major component of the Mediterranean Sea winter communities, is absent from the lagoon. Luminous Beneckea strains show a great diversity in properties, e.g. temperature range for growth, sensitivity to infection by phages, sensitivity to attack by Bdellovibrio strains, and differences in tolerance to high-salinity shock. Therefore, subdivision of the taxonomic cluster of B. harveyi into subtypes is indicated. The composition of the luminous bacteria communities may serve as indicators of different marine water bodies. The symbiotic luminous bacteria of the light organ of the common Gulf of Elat fish, Photoblepharon palbebratus steinitzi, is different from any of the types described.  相似文献   

16.
Addition of tris-(hydroxymethyl)-aminomethane (Tris) into the culture medium of Azospirillum brasilense sp245 changes the antigenic properties of the lipopolysaccharide (LPS) isolated from the external membrane of the bacteria. LPS preparations from the bacteria grown in the presence of Tris have been analyzed by immunodiffusion, using monospecific antibodies. The disappearance of the precipitation band corresponding to one of the two O-specific polysaccharides of the LPS (O-PS) and changes in the electrophoretic profile have been revealed. However, only minor differences in absorption spectra of products of O-PS1 reaction with phenol/sulfuric acid have been demonstrated between the bacteria grown under standard conditions and in the presence of Tris.  相似文献   

17.
The nature of major antigens of Pseudomonas syringae was studied on one strain of four pathovars (pvs aptata, mors-prunorum, phaseolicola and tabaci) belonging to four separate serogroups. Bacterial antigens were prepared by 4 procedures: extraction by phenol-water (PW), by citrate-NaCl (CN), by trichloracetic acid (TCA), and precipitation of a glycoproteic extracellular complex (GP). 3-Deoxy-2-octulosonic acid (KDO) revelation in all the extracts showed that the four procedures led to antigens containing similar amounts of lipopolysaccharide (LPS). Twenty polyclonal antisera were raised in rabbits against whole bacteria and the different extracts. Serological reactions were tested by gel double diffusion (DD) and indirect immunofluorescent staining (IF). The anti-whole cell sera were shown to contain mostly anti-LPS antibodies. For each pathovar, whole bacteria used as antigens in DD gave precipitation bands identical to the bands given by the LPS extracts (PW, CN or TCA), identical to the heated bacteria (HB), and identical to LPS sidechain preparations. The GP extract itself was shown to be rich in LPS. To serotype P. syringae, it is advised to raise antisera against either whole bacteria or GP extracts; whereas the reacting antigens for DD would be heated bacteria.  相似文献   

18.
Three taxa of luminous bacteria (Photobacterium fischeri, P. phosphoreum, and Beneckea spp.) were found in the enteric microbial populations of 22 species of surface- and midwater-dwelling fishes. These bacteria often occurred in concentrations ranging between 105 and 107 colony-forming units per ml of enteric contents. By using a genetically marked strain, it was determined that luminous cells entering the fish during ingestion of seawater or contaminated particles traversed the alimentary tract and survived the digestive processes. After excretion, luminous bacteria proliferated extensively on the fecal material and became distributed into the surrounding seawater. Thus, this enteric habitat may serve as an enrichment of viable cells entering the planktonic luminous population.  相似文献   

19.
H. Qavi  S. Kit 《Biochemical genetics》1980,18(7-8):669-679
A histochemical procedure has been developed for staining aminoacylase-1 (ACY-1) isozymes after electrophoresis on cellulose acetate membranes. N-Formyl-L-methionine and N-acetyl-L-methionine were excellent enzyme substrates in the staining reaction. The ACY-1 isozymes from tissue culture cells of several vertebrate species showed distinguishable electrophoretic patterns. The ACY-1 isozymes in extracts of mouse, human, owl monkey, and African green monkey kidney cells each had electrophoretic mobilities different from those of peptidases S, A, and C from the same cells. Except for African green monkey kidney (CV-1) cells, the animal species expressed a single anodally migrating ACY-1 band. Human-mouse somatic cell hybrids containing the short arm of human chromosome 3 expressed three ACY-1 bands, as would be predicted from the dimeric structure of the enzyme. CV-1 cells expressed two (or three) ACY-1 bands, suggesting the possibility that CV-1 cells contained two alleles at a single locus or two genetic loci for ACY-1.This research was aided by USPHS Grants CA-06656-17 and 1-K6KAI-2352-17 from the National Cancer Institute and the National Institute of Allergy and Infectious Diseases, and by Contract NO1-CP-71058 from the National Cancer Institute.  相似文献   

20.
Luminous bacteria in seawater around the islands of Bahrain are predominantly Vibrio harveyi and have the capability to adhere to artificial fibrous surfaces. Phytoplankton did not appear to have any specific relationship with luminous bacteria, but macroalgae were shown to possess an enhanced concentration of luminous bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号