首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The sperm head of the plains mouse, Pseudomys australis, has three curved hooks projecting from its anterior margin. The two ventral hooks have previously been shown to consist largely of an extension of the subacrosomal material. To characterize further the structure and composition of the ventral hooks, we have examined their formation during spermiogenesis using transmission electron microscopy, silver staining, and actin localization with NBD-phallacidin. The ventral hooks develop as an extension of the perinuclear space and postacrosomal dense lamina on the anteroventral margin of the sperm head. Bundles of 6-nm-thick filaments appear in the core of each hook; these are probably actin filaments based on staining of the hooks with NBD-phallacidin. Just prior to spermiation, electron-dense material condenses in the core of the ventral hooks and concurrently in the perinuclear space in the remainder of the sperm head. The two ventral hooks thus appear to consist of a core of perinuclear material and actin filaments, which is enclosed by a continuation of the postacrosomal dense lamina.  相似文献   

2.
The murine rodents are the most speciose subfamily of mammals. Here the morphology of the spermatozoon, as determined by scanning and transmission electron microscopy of representative species from four Eurasian clades, is described. Much interspecific variability in all components of the spermatozoon was found to occur, although most species have a bilaterally flattened sperm head with a single apical hook of variable length and orientation. Ultrastructural observations indicate that this apical hook invariably contains a nuclear projection as well as a large extension of the subacrosomal cytoskeleton, as a perforatorium rostrally, and a complex asymmetrical acrosomal extension. These spermatozoa also have relatively long tails that are attached to the lower concave surface of the sperm head. Uniquely, in species in the Apodemus clade, the apical hook is orientated caudally. In a few species a highly derived sperm head morphotype that does not contain an apical hook is present. These sperm heads vary in morphology from being globular in two species of Bandicota, to bilaterally flattened and paddle-shaped in Tokudaia and Micromys. In spermatozoa of the latter two genera the subacrosomal cytoskeleton, which is less extensive than in species with a hooked sperm head, forms an apical extension, but that is not the case in Bandicota. In all species where the sperm head lacks an apical hook the acrosome is more symmetrical. The sperm tail is much shorter in these species, with attachment to the head occurring on the ventral surface in Tokudaia and basal in Micromys and the two species of Bandicota. As the sperm head morphotype with a complex apical hook is present in all the major clades of murine rodents, it is likely to be a plesiomorphic character within each of these clades, with the nonhooked sperm heads, which vary greatly in structure between species of the different lineages, probably being independently derived. The ultrastructural organization of the sperm head of Bandicota, but not those of Micromys or Tokudaia, suggest divergence in some of the morphological events associated with sperm-egg interaction at the time of fertilization.  相似文献   

3.
The diversity of the structural organization of the spermatozoa of African murid rodents is described at the light and transmission electron microscopical level of resolution. In most species the sperm head is falciform in shape but it varies somewhat in overall breadth, width, and length. A typical perforatorium is present and the acrosome splits into a large head cap over the convex surface and a smaller ventral segment similar to the sperm head of most Asian and Australasian murids. In a few species, however, the morphology is very different. In Acomys and Uranomys spermatozoa, the apical hook is more bilaterally flattened, has a large apical acrosomal region, and no separate ventral segment. Two species of Aethomys have, in addition to an apical hook, a 4μ long extension of the cytoskeletal material that projects from the concave surface of the sperm head, whereas in Dasymys two large ventral processes extend from the upper concave region which contain nuclear material basally and a huge extension of cytoskeleton apically. In Aethomys chrysophilus type B, the sperm nucleus is unique in form and often has a central region in which threads of chromatin can be seen; it is capped by a massive acrosome whose apical segment is complex and convoluted in structure. Stochomys longicaudatus appears to have a conical sperm head, and in all three Lophuromys species the sperm head is spatulate in shape with the flat, plate-like nucleus capped by a thin acrosome. The evolutionary trends in changes of sperm head shape and design of these rodents are discussed. It is suggested that some of the differences in morphology may relate to the variation in structural organization of the coats around the egg through which the spermatozoon has to pass in order for fertilization to occur.  相似文献   

4.
Two types of filaments were observed within the subacrosomal space of rat spermatids. The first of these types was characterized as actin by demonstration of actin filament affinity for myosin S-1 subfragments. Actin filaments were noted in the subacrosomal space shortly after the acrosomal sac made contact with the nucleus. As the acrosome increased its surface area contact with the spermatid nucleus, the number of layers of subacrosomal filaments increased. Pre-treatment with detergent, which in addition to permeablizing cells to allow entry of S-1, also caused the acrosome to vesiculate and the subacrosomal space to widen. In such preparations filaments were more easily visualized and appeared to extend between the nuclear and acrosomal membranes, indicating, but not proving, attachment to these membranes. During spermatid clongation, the number of actin filaments in the subacrosomal space increased greatly, especially over the dorsal convex region of the spermatid head. The polarity of the majority of filaments was not ascertainable since filaments were tightly packed within the narrow subacrosomal space. In late spermiogenesis (steps 18 and 19), actin filaments were no longer detected within the subacrosomal space. A second and much thicker type of filamentous structure was observed in the subacrosomal space of spermatids at steps 14-17 of spermiogenesis. About 14 nm in diameter (10-15 nm measurement range depending on fixation protocol utilized), these filaments did not decorate with myosin S-1 subfragments and were found in subacrosomal regions not containing actin. Fourteen nanometer filaments were seen in parallel array along the ventral folded portion of the nuclear membrane and extended partially around the nucleus. Like actin filaments. 14 nm filaments were not seen in the subacrosomal space during late spermiogenesis.  相似文献   

5.
The sperm head of the plains rat, an Australian hydromyine rodent, is highly complex in structure and contains, in addition to an apical hook, two large ventral processes (VPs) that extend from its upper concave surface and that are largely composed of a huge extension of the sperm head cytoskeleton surrounded by postacrosomal dense lamina. In this study we have attempted to determine their protein composition. For this, the VPs were isolated, the proteins within them separated by SDS-PAGE, and the resultant polypeptide bands Western blotted and probed with antibodies against laboratory rat perforatorial and bull perinuclear theca sperm proteins. Antibodies were also used to determine the perforatorial and perinuclear theca proteins by immunogold labeling of transmission electron microscopic sections. The results indicate that the material within the VPs is largely composed of perforatorial cross-reacting proteins together with F-actin with the dominant protein being PERF 15. The perinuclear theca proteins are, by contrast, restricted to a narrow region adjacent to the acrosomal and nuclear membranes. In conclusion, this study has shown that the VPs of the spermatozoa of Australian rodents are perforatorial-like appendages that contain similar proteins to the perforatorium of the apical hook together with F-actin; their functional significance remains unknown.  相似文献   

6.
The morphology of spermatozoa from the red veld rat, Aethomys chrysophilus, of Southern Africa is described; two very different types were found, which came from animals from two separate, as-yet-undescribed, species. In individuals from South Africa the sperm head had a somewhat disc-shaped nucleus and a large acrosome with a huge apical segment that, during epididymal transit, changed in form from initially projecting anteriorly to a highly complex structure that was flexed caudad and lay alongside part of the rest of the sperm head. In addition, the chromatin generally appeared to be not fully condensed. Spermatozoa from animals collected in Malawi were very different in morphology and had a head with a typical apical hook, a perforatorium, fully condensed chromatin, and a 4-μm-long ventral spur. Its sperm tail was also significantly longer. The time of divergence of these two groups of animals from a common ancestor is not known, but the present results show that a considerable morphological change in the sperm nucleus, acrosome, and subacrosomal space can evolve even between two, presumably closely related, species.  相似文献   

7.
Actin was localized in testicular spermatids and in ionophore-treated ejaculated sperm of boar by use of a monoclonal anti-actin antibody labeled with colloidal gold. With the on-grid postembedding immunostaining of Lowicryl K4M sections, actin was identified in the subacrosomal region of differentiating spermatids, in the microfilaments of the surrounding Sertoli cells, and in the myoid cells of the tubular wall. Ejaculated sperm, labeled with the preembedding method, showed actin between the plasma membrane and the outer acrosomal membrane of the equatorial segment. Indirect immunofluorescence was positive in the equatorial segment and in the acrosomal cap of intact sperm, whereas reacted sperm at the anterior head region retained fluorescence only in the inner acrosomal membrane. Rhodamine-phalloidin failed to stain intact and reacted sperm. The distribution of actin in sperm head membranes (inner acrosomal membrane, membranes of the equatorial segment), which are retained after the acrosome reaction, is discussed.  相似文献   

8.
The morphology of the spermatozoon of representative species of the subfamily Nesomyinae (Muroidea: Nesomyidae), a monophyletic group of rodents endemic to Madagascar, was examined by light and electron microscopy to determine the sperm head shape and tail length across the species. Marked interspecific differences were found to occur in both the form of the sperm head and length of the tail. The species that possess a sperm head with an apical hook, which largely contains acrosomal material, generally displayed longer sperm tails, and a species with a spatulate sperm head had the shortest tail. The association between sperm head shape and tail length mirrors that previously found in Eurasian and Australasian murine rodents. Thus, the repeated association between sperm head shape and tail length across these groups of muroid rodents clearly indicates a functional relationship between these two features. A comparison of sperm morphology of the nesomyines to that of related muroid rodents on the mainland of Africa suggests that the possession of an apical hook is the ancestral condition. J. Morphol., 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

9.
摘要:为了解乌梢蛇(Zaocys dhumnades)精子形成的规律,用透射电镜对其头部超微结构进行了观察。结果表明,乌梢蛇精子头部形成可分为4个阶段:阶段Ⅰ,前顶体囊泡内的颗粒物质融合形成1个顶体颗粒而发育为顶体囊泡,随着顶体囊泡的增大,在顶体囊泡与核膜之间形成了致密的纤维物质层。阶段Ⅱ,顶体囊泡变扁平,顶体颗粒分散...  相似文献   

10.
The mature spermatozoa of Buthus occitanus are threadlike in shape and divided into sperm head, middle piece, and end piece. The sperm head is corkscrew shaped anteriorly and in this region bears an unusual acrosomal complex consisting of a ring-shaped acrosomal vacuole associated with a subacrosomal filament and a perinuclear amorphous component. The subacrosomal filament extends posteriorly into a tube-like invagination of the elongated nucleus. The middle piece is characterized by elongated mitochondria which spiral around the anterior part of the flagellum in an extended collar separated from the flagellum by an extracellular cleft, termed the central flagellar tunnel. In addition to the usual 9 × 2 + 2 axonemal pattern in flagella, 9 × 2 + 1 and 9 × 2 + 3 patterns also were observed. The end piece is represented by the free flagellum. Similarities and diversities of scorpionid spermatozoa are discussed with respect to systematic relationships.  相似文献   

11.
周娜  常岩林  王莉 《昆虫学报》2012,55(4):395-402
为阐明F-肌动蛋白在优雅蝈螽Gampsocleis gratiosa Brunner von Wattenwyl精子形成过程中的动态变化, 本研究利用微分干涉相衬技术和免疫荧光技术首次对优雅蝈螽精子形成过程中的F-肌动蛋白进行了细胞定位, 利用透射电镜技术从超微水平观察了优雅蝈螽精子顶体复合体的结构。结果显示: 精子形成早期, F-肌动蛋白富集于亚顶体区域, 形态由“球状”转变为“棒锥状”; 精子形成中期, F-肌动蛋白呈“倒Y型”分布于亚顶体区域和细胞核前端两侧; 精子形成后期, 亚顶体区域的F 肌动蛋白解聚消失, F-肌动蛋白呈“箭头状”, 仅分布于顶体复合体扩张的两翼中。F-肌动蛋白动态变化伴随着细胞核和精子头部的形态改变, F-肌动蛋白的动态装配在精子顶体复合体形态构建和细胞核的形变中起着重要的作用。本研究还发现未成熟的精子尾部有一些富含F-肌动蛋白的细胞质微滴, 与精子形成过程中多余细胞质和细胞器的外排有关。F-肌动蛋白的动态变化研究为进一步阐明细胞骨架蛋白在昆虫精子形成过程中的功能和作用机制奠定了基础。  相似文献   

12.
In the rodent superfamily Muroidea, a model for the evolution of sperm form has been proposed in which it is suggested that a hook-shaped sperm head and long tail evolved from a more simple, nonhooked head and short tail in several different subfamilies. To test this model the shape of the sperm head, with particular emphasis on its apical region, and length of sperm tail were matched to a recent phylogeny based on the nucleotide sequence of several protein-coding nuclear genes from 3 families and 10 subfamilies of muroid rodents. Data from the two other myomorph superfamilies, the Dipodoidea and kangaroo rats in the Geomyoidea, were used for an outgroup comparison. In most species in all 10 muroid subfamilies, apart from in the Murinae, the sperm head has a long rostral hook largely composed of acrosomal material, although its length and cross-sectional shape vary across the various subfamilies. Nevertheless, in a few species of various lineages a very different sperm morphology occurs in which an apical hook is lacking. In the outgroups the three species of dipodid rodents have a sperm head that lacks a hook, whereas in the heteromyids an acrosome-containing apical hook is present. It is concluded that, as the hook-shaped sperm head and long sperm tail occur across the muroid subfamilies, as well as in the heteromyid rodents, it is likely to be the ancestral condition within each of the subfamilies with the various forms of nonhooked sperm heads, that are sometimes associated with short tails, being highly derived states. These findings thus argue against a repeated evolution in various muroid lineages of a complex, hook-shaped sperm head and long sperm tail from a more simple, nonhooked sperm head and short tail. An alternative proposal for the evolution of sperm form within the Muroidea is presented in the light of these data.  相似文献   

13.
The distribution of filamentous actin around the maturing sperm head and in spermatozoa of four species of Australian conilurine rodents was investigated at the light and electron microscopic levels. Similar results were obtained for all the species studied. Mechanically isolated spermatids had NBD-phallacidin-positive longitudinal bands of fluorescence over the dorsolateral surface and, in late spermatids, bands of bright fluorescence passed perpendicularly from the dorsal convex to ventral concave surface. TEM observations indicated that these regions corresponded to filaments of ectoplasmic specializations and granular filamentous material around the tubulobulbar complexes, respectively. In testicular and cauda spermatozoa NBD-phallacidin fluorescent material was present in the two ventral processes that extended from the upper concave surface of the sperm head; also fainter material occurred along the concave border and as a dorsocaudal spur. Its distribution was identical for testicular and cauda spermatozoa. TEM of late spermatids showed that in the ventral process closest to the apical hook there were between 170 and 245 filaments, which attached to the inner surface of the postacrosomal dense lamina; in the more caudal ventral process about 70 filaments occurred. No filaments were, however, visible in the mature spermatozoon but, after immunocytochemical labelling for actin, deposition of gold particles was evident over ventral processes of both late spermatids and cauda spermatozoa. Within the female tract these ventral processes made contact with the zona matrix and were taken into the egg cytoplasm unchanged in morphology. The possible functional significance of the filamentous actin in these structures is discussed.  相似文献   

14.
Sperm morphology varies considerably both between and within species. The sperm of many muroid rodents bear an apical hook at the proximal end of the head. The curvature of the sperm hook varies greatly across species, however the adaptive significance of the sperm hook is currently not known. In wood mice the apical hooks intertwine to form sperm ‘trains’, which exhibit faster swimming velocities than single cells. Thus, it has been suggested that if sperm ‘trains’ were advantageous in a competitive situation, then the apical sperm hook might be an evolutionary product of selection via sperm competition. A comparative study of rodent species provided support for the hypothesis, and showed that species with higher levels of sperm competition had more reflected sperm hooks. Here, we tested this hypothesis at the intraspecific level. We quantified sperm hook morphology from seven house mouse populations, and found that interpopulation variation in hook curvature was not explained by variation in sperm competition risk. Furthermore, observations of ejaculated sperm revealed that sperm groups are not a common characteristic of mouse ejaculates. We suggest that selection for sperm attachment to the oviduct epithelium, and thus better retainment of sperm fertilizing potential, may provide a more general explanation of the evolutionary relationship between sperm competition risk and the curvature of the sperm hook among rodents, and provide a phylogenetic comparison among rodent species that supports our hypothesis.  相似文献   

15.
The sperm of Luidia clathrata are morphologically typical of asteroid sperm. The head is spherical and contains the nucleus and acrosomal complex. The nucleus has an anterior indentation in which rests the acrosomal complex. There is no evidence of a centriolar fossa along the posterior border of the nucleus. The acrosome is a cup-shaped structure containing a less electron dense central region. The periacrosomal material is homogeneous in nature, and the subacrosomal specialization of the periacrosomal materials appear as bands of varying electron density. The middle piece is an annular band of mitochondria which surrounds the proximal and distal centrioles. The centrioles exhibit the typical nine triplet arrangement. Both the centrioles and the axoneme project to one side of the middle piece region. Associated with the distal centriole is an elaborate pericentriolar process.  相似文献   

16.
Caltrin is a small and basic protein of the seminal vesicle secretion that inhibits sperm calcium uptake. The influence of rat caltrin on sperm physiological processes related to fertilizing competence was studied by examining its effect on 1) spontaneous acrosomal exocytosis, 2) protein tyrosine phosphorylation, and 3) sperm-egg interaction. Results show that the presence of caltrin during in vitro capacitation both reduced the rate of spontaneous acrosomal exocytosis without altering the pattern of protein tyrosine phosphorylation, and enhanced the sperm ability to bind to the zona pellucida (ZP). The significantly higher proportion of sperm with intact acrosome observed in the presence of caltrin was accompanied by a strong inhibition in the acrosomal hyaluronidase release. Enhancement of sperm-ZP binding was evident by the increase in the percentage of eggs with bound spermatozoa as well as in the number of bound sperm per egg. Similar results were obtained when the assays were performed using spermatozoa preincubated with caltrin and then washed to remove the unbound protein, indicating that the sperm-bound caltrin was the one involved in both acrosomal exocytosis inhibition and sperm-ZP binding enhancement. Caltrin bound to the sperm head was partially released during the acrosomal exocytosis induced by Ca-ionophore A23187. Indirect immunofluorescence and immunoelectron microscopy studies revealed that caltrin molecules distributed on the dorsal sperm surface disappeared after ionophore exposure, whereas those on the ventral region remained in this localization after the treatment. The present data suggest that rat caltrin molecules bound to the sperm head during ejaculation prevent the occurrence of the spontaneous acrosomal exocytosis along the female reproductive tract. Consequently, more competent spermatozoa with intact and functional acrosome would be available in the oviduct to participate in fertilization.  相似文献   

17.
Competition between spermatozoa of rival males to gain fertilizations has led to a wide array of modifications in sperm structure and function. Sperm cells of most muroid rodents have hook‐shaped extensions in the apical–ventral tip of the head, but the function of this structure is largely unknown. These ‘hooks’ may facilitate aggregation of spermatozoa in so‐called ‘trains’, as an adaptation to sperm competition, because sperm in trains may swim faster than free‐swimming cells. However, there is controversy regarding the role of the hook in train formation, and in relation to whether it is selected by sperm competition. We examined spermatozoa from muroid rodents with varying levels of sperm competition to assess whether (i) sperm aggregates are common in these taxa, (ii) presence of a hook relates to the formation of sperm aggregations, and (iii) formation of sperm aggregations is explained by sperm competition. Our analyses in 25 muroid species revealed that > 92% of spermatozoa swim individually in all species, with the exception of the wood mouse, Apodemus sylvaticus, which has ~50% spermatozoa swimming freely. Species with hooked spermatozoa had higher sperm competition levels and longer sperm than species whose sperm lack a hook. Neither the presence of hook nor sperm competition levels were related to the percentage of sperm in aggregations. Thus, (i) sperm aggregates in muroid rodents are an exceptional trait found only in a few species, (ii) evolution of the sperm hook is associated to sperm competition levels, but (iii) the hook is unlikely to be related to the formation of sperm aggregates. The evolutionary significance of the sperm head hook thus remains elusive, and future studies should examine potential roles of this pervasive structure in sperm's hydrodynamic efficiency and sperm–female tract interactions.  相似文献   

18.
Spermatozoa from the ductus deferens of a naked-tail armadillo, Cabassous unicinctus, were arranged in rouleaux. The sperm heads were wafer-thin, with the acrosome and nucleus flattened together. Dense subacrosomal material in the equatorial segment of the acrosomal region was present on one surface but not on the other.  相似文献   

19.
Sperm from the American lobster (Homarus americanus) are normally nonmotile. However, during fertilization, the sperm undergo a calcium-dependent acrosome reaction that propels them forward about 18 μMm. The reaction occurs in two phases, eversion and ejection, which take place too quickly to permit analysis by direct observation. The purposes of this study were to examine the structural changes occurring in sperm during the normal acrosome reaction and to determine the rate of the reaction using video microscopy. The reaction was induced in vitro by ionophore A23187 and recorded using a video system attached to a Nikon Nomarski interference microscope. Videotapes were played back frame by frame (30 frames/sec), and images of reactions from 10 sperm were analyzed. The acrosome reaction, including the eversion of the acrosomal vesicle and ejection of the subacrosomal material and nucleus, can be divided into 4 steps: (1) expansion of the apical cap followed by expansion of the remainder of the acrosomal cylinder; expansion of the cylinder begins at its apical end and proceeds toward its base, (2) eversion of the apical half of the acrosomal vesicle and initial contraction of the apical cap, (3) eversion of the basal half of the acrosomal vesicle, continued contraction of the apical cap, and ejection of the subacrosomal material and nucleus, and (4) final contraction of the apical cap and ejection of the acrosomal filament. During steps 2, 3, and 4, the mean forward movement of sperm is 12.7, 3.9, and 1.1 μMm, respectively. Although the time required to complete the reaction ranged from 0.66 to 5.16 s, most sperm reacted in less than 3. s, and these sperm were considered to have typical rates. For sperm that reacted in less than 3 s, both step 1 and step 4 take about 0.2 s and show little variation among sperm. the time required to complete steps 2 and 3 averaged 0.63 and 0.37 s, respectively. Forward movement of the sperm during the acrosome reaction is caused by eversion of the inner and outer acrosomal material and contraction of the apical cap. The protein(s) responsible for this contraction is not yet known. © 1993 Wiley-Liss, Inc.  相似文献   

20.
Breed, W.G. and Leigh, C.M. 2010. The spermatozoon of the Old Endemic Australo‐Papuan and Philippine rodents – its morphological diversity and evolution.—Acta Zoologica (Stockholm) 91 : 279–294 The spermatozoon of most murine rodents contains a head in which there is a characteristic apical hook, whereas most old endemic Australian murines, which are part of a broader group of species that also occur in New Guinea and the Philippines, have a far more complex sperm form with two additional ventral processes. Here we ask the question: what is the sperm morphology of the New Guinea and Philippines species and what are the trends in evolutionary changes of sperm form within this group? The results show that, within New Guinea, most species have a highly complex sperm morphology like the Australian rodents, but within the Pogonomys Division some species have a simpler sperm morphology with no ventral processes. Amongst the Philippines species, many have a sperm head with a single apical hook, but in three Apomys species the sperm head contains two additional small ventral processes, with two others having cockle‐shaped sperm heads. When these findings are plotted on a molecular phylogeny, the results suggest that independent and convergent evolution of highly complex sperm heads containing two ventral processes has evolved in several separate lineages. These accessory structures may support the sperm head apical hook during egg coat penetration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号