首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract Sucking insects constituted 79% of all phytophagous insects collected from woody sprouts in the ground layer of a tropical eucalypt forest. Mobile insect groups such as non-psyllid Hemiptera and Orthoptera were relatively frequent in this environment compared to temperate, Eucalyptus-dominated vegetation. The high fire frequency of the tropical eucalypt forest may favour mobile insect groups. The capture of sucking insects and caterpillars peaked in dry season samples. Other patterns of abundance of phytophagous insect groups showed little consistency in their seasonal trends between host species or between vegetation types within host species. Disparities between chewing insect abundance in daytime samples and the damage chewing insects cause, may result from disproportionate consumption by large, mainly nocturnal insects, such as members of the Orthoptera. In this study, 21% of insect species were specialists on single plant species. This study suggested that insect abundance reflected the growth patterns of woody sprouts after regular burning, rather than that plant growth and development were tuned to the pressures of insect herbivory.  相似文献   

2.
Abstract The influence of soil moisture content on leaf dynamics and insect herbivory was examined between September 1991 and March 1992 in a river red gum (Eucalyptus camaldulensis) forest in southern central New South Wales. Long-term observations of leaves were made in trees standing either within intermittently flooded waterways or at an average of 37. 5m from the edge of the waterways. The mean soil moisture content was significantly (P≤0.05) greater in the waterways than in the non-flooded areas. Trees in the higher soil moisture regime produced significantly larger basal area increments and increased canopy leaf area. This increase in canopy leaf area was achieved, in part, through a significant increase in leaf longevity and mean leaf size. Although a greater number of leaves was initiated and abscissed per shoot from the non-flooded trees, more leaves were collected from litter traps beneath the denser canopies of the flooded trees. Consumption of foliage by insects on the trees subjected to flooding compared to the non-flooded trees was not significantly different. However, the relative impact of insect herbivory was significantly greater on the non-flooded trees. Leaf chewing was the most common form of damage by insects, particularly Chryso-melidae and Curculionidae. No species was present in outbreak during this study. Leaf survival decreased as the per cent area eaten per leaf increased. In addition, irrespective of the level of herbivory, leaf abscission tended to be higher in E. camaldulensis under moisture deficit. The influence of soil moisture content on the balance between river red gum growth and insect herbivory is discussed.  相似文献   

3.
1. As part of a larger study on canopy arthropods and birds, a 1‐year chemical knockdown study was carried out in one Western Australian forest, where jarrah Eucalyptus marginata and marri E. (Corymbia) calophylla were sampled, and one eastern Australian (New South Wales) forest, where narrow‐leaved ironbark E. crebra and grey box E. moluccana were sampled. 2. Ten trees of each species were sampled during each of the four seasons and the arthropods were sorted to morphospecies level. This paper documents the foliage‐associated component of arboreal arthropod communities and compares arthropod species richness within orders and families, between tree species, and between the two forest types. 3. Hymenoptera, Coleoptera, Diptera, and Araneae were the richest in species. Nine hundred and seventy‐six species in 173 families were found in the eastern Australian forest, while 687 species in 176 families were found in the western Australian forest. Only 53% of families were common to both forests, but almost half the families recorded were represented by fewer than five species. Species overlap between tree species in each region was 40–53%. 4. Analysis using nonparametric bootstrapping procedures showed that sampling of foliage was comprehensive and that only 4–9% more species would be expected with more intensive sampling of the canopy. Absolute richness, as well as differences between tree species and regions, therefore appear to be real and not the result of sampling errors. As a consequence, arthropod species richness in Australian eucalypt forests is shown to be substantially greater than previous estimates.  相似文献   

4.
Abstract Eucalypts from the subgenus Monocalyptus tend to be more abundant and dominate species from the subgenus Symphyomyrtus where they occur together in the mixed species stands of southeastern Australia. The differential impacts of herbivory by phytophagous insects has been postulated as a causal mechanism in the creation and maintenance of such stands. This research aimed to quantify phytophagous insect abundance and herbivory in mixed species juvenile regrowth of Eucalyptus globulus, E. viminalis (Symphyomyrtus), E. obliqua and E. pulchella (Monocalyptus} southwest of Hobart, Tasmania. Monocalyptus experienced a higher level of herbivory than Symphyomyrtus. However, mean damage levels were relatively low at less than 11% throughout. Furthermore, due to the positively skewed nature of herbivory data the mean was an inappropriate measure of central tendency; median damage levels ranged from 4.9% to 8.4%. Patterns of herbivory tended to be different for each eucalypt species: E. obliqua was particularly prone to chewing damage, E. pulchella and E. globulus suffered higher levels of distortion while E. viminalis was least affected by insect attack. Even though some trends in insect community structure seemed apparent at the level of eucalypt subgenus, closer examination revealed patterns of abundance were characteristic of each Eucalyptus species. The composition of foliar damage corresponded with the prominence of particular insect groups. Sucking insects tended to dominate the fauna except on E. obliqua where chewing insects in general, and chrysomelids in particular, were most prevalent. Both the distribution and magnitude of herbivory suggested that phytophagous insects had a negligible effect on competition between coexisting juvenile eucalypts and were unlikely to be responsible for the dominance of Monocalyptus or the maintenance of mixed species stands.  相似文献   

5.
Abstract The presence of the aggressive, colony-forming honeyeater, Manorina melanophrys (bell miner), in the canopies of unhealthy eucalypts has been well reported. There is, however, some debate as to the actual mechanisms producing these unhealthy trees. To investigate further some of the processes that may be contributing to this form of canopy dieback, two field trials were carried out in Olney State Forest, near Wyong, New South Wales. The study site contained Eucalyptus saligna (Sydney blue gum) with canopy dieback and was occupied by a large colony of bell miners. Close examination of the foliage revealed a large and diverse suite of phytophagous insects, including at least 16 species of psyllid (Hemiptera: Psyllidae). In the first trial, the use of bird exclusion cages over selected branches significantly improved leaf survival compared to leaves exposed to a relatively high density of bell miners. It is proposed that colonization by bell miners may interfere with the efficacy of both other insectivorous birds (through aggressive interspecific territoriality) and the invertebrate predators and parasitoids. Interference with such regulatory factors may enable some phytophagous insect populations to rise to sustained damaging levels. In the second trial, an insecticide application combined with reduced competition from the dense understorey and neighbouring trees was required to significantly improve trunk diameter and crown condition scores. After 12 months, neither treatment, by itself, significantly improved both growth measures. Possibly both treatments were required because the E. saligna trees were suffering from another source of stress (e.g. drought) in addition to the relatively high level of insect attack.  相似文献   

6.
多样化松林中昆虫群落多样性特征   总被引:4,自引:2,他引:2  
刘兴平  刘向辉  王国红  韩瑞东  戈峰 《生态学报》2005,25(11):2976-2982
马尾松和湿地松是我国南方的2种主要松树。通过对6种不同林分结构下的马尾松林和湿地松林内昆虫群落调查与多样性指数分析,表明2种松树内的昆虫种类和数量无显著差异,混交林中的昆虫群落的种类和数量比纯林多,尤其以捕食天敌类群的种类和数量更为明显。整个昆虫群落和植食类群多样性指数以湿地松林内较大,而天敌(捕食类群和寄生类群)多样性指数则以马尾松林较高。从不同林分结构下昆虫多样性的比较来看,混交林内昆虫群落多样性指数波动较小,明显地高于纯林。但不同林分结构下昆虫多样性随水平分布和垂直分层格局而变化,松树北面和东面各样地之间的昆虫群落多样性指数差异显著,而南、西面之间差异较小;树冠层各样地之间的差异达极显著水平,而枯枝落叶层和树干层之间差异不显著。由此,还进一步讨论了混交林中昆虫群落稳定性问题。  相似文献   

7.
Summary We tested the hypothesis that herbivorous insects on desert shrubs contribute to short-term nitrogen cycling, and increase rates of nitrogen flux from nutrient rich plants. Creosotebush (Larrea tridentata) shrubs were treated with different combinations of fertilizer and water augmentations, resulting in different levels of foliage production and foliar nitrogen contents. Foliage arthropod populations, and nitrogen in canopy dry throughfall, wet throughfall and stemflow were measured to assess nitrogen flux rates relative to arthropod abundances on manipulated and unmanipulated shrubs over a one-month period during peak productivity. Numbers and biomass of foliage arthropods were significantly higher on fertilized shrubs. Sap-sucking phytophagous insects accounted for the greatest numbers of foliage arthropods, but leaf-chewing phytophagous insects represented the greatest biomass of foliage arthropods. Measured amounts of bulk frass (from leaf-chewing insects) were not significantly different among the various treatments. Amounts of nitrogen from dry and wet throughfall and stemflow were significantly greater under fertilized shrubs due to fine frass input from sap-sucking insects. Increased numbers and biomass of phytophagous insects on fertilized shrubs increased canopy to soil nitrogen flux due to increased levels of herbivory and excrement. Nitrogen excreted by foliage arthropods accounted for about 20% of the total one month canopy to soil nitrogen flux, while leaf litter accounted for about 80%.  相似文献   

8.
The distribution of biomass and nutrients (N, P, K, Na, Mg, and Ca) among components of a Eucalyptus regnans forest and a mixed Eucalyptus obliqua-Eucalyptus dives forest near Melbourne in southern Victoria have been determined and are discussed. Both forests were found to have relatively low root biomass. Trees and soil accounted for more than 80% of each nutrient present in both ecosystems. The results of nutrient distribution studies in Australian eucalypt forests and in temperate forests elsewhere in the world are compared. These comparisons suggest that the above-ground living biomass in eucalypt forests contains no abnormally high or low quantities of macronutrients in relation to coniferous or deciduous hardwood forests. Detailed comparison among ecosystems is rendered difficult by the variable treatment given to roots and soils.  相似文献   

9.
In this paper it is argued that concepts developed in ecologically derived insect–plant interaction models can contribute directly to the management of insect herbivory in eucalypt plantations. Common to most species of commercially planted eucalypt is their genetic potential for early rapid growth. Several plant defence theories predict that intrinsically fast growing plants are able to tolerate relatively high levels of herbivory. The risk of this strategy failing increases when plants are exposed to external stressful factors that reduce canopy growth and vigour. Results from a young Eucalyptus camaldulensis plantation stressed by moisture deficit and two young Eucalyptus dunnii plantations, stressed by flooding and weed competition, respectively, are summarized. In all three cases, the stress‐inducing agents reduced canopy growth rates and architecture so that the proportion of leaf tissue damaged by insects increased and the tree’s ability to tolerate this damage decreased. Therefore, alleviating tree stress through improved silvicultural practices or improved site selection techniques may indirectly reduce the impact of insect herbivory. In resource‐limiting environments, an alternative approach may be to plant eucalypt species that although slower growing, are predicted to have better defended foliage. Manipulation of these natural antiherbivore plant strategies are not exclusive of other management approaches, such as the need for routine surveillance of key pest insects or the genetic selection of natural insect resistance and selective chemical control techniques, but should be viewed as an overarching concept for plantation health.  相似文献   

10.
Accession, decomposition and accumulation of litter were studied in three sub-alpine eucalypt forest communities (dominated by overstoreys of Eucalyptus delegatensis, E. pauciflora or E. dives) located in the Brindabella Range. Australian Capital Territory, at an elevation of 1100–1250 m. The sites had either been protected from fire for more than 20 years or been burnt by low-intensity prescribed fires. After a prescribed burn, the rate of decomposition of abscised leaves was reduced by 22% in E. delegatensis forest and by 34% in E. pauciflora forest, but was little affected in the drier E. dives community. Lowered decomposition was apparently due to greater aridity after fire, a consequence of removal of the shading understorey and reduction in the depth and hence mulching effect of the titter layer. Litter accumulates rapidly after prescribed burning, reaching a mass of 10–12 t ha?1 within 4–5 years in all communities. Such quantities are dangerous from a fire control viewpoint. The quasi steady-state mass of accumulated litter ranges from about 17 t ha?1 in E. dives and E. pauciflora forests to about 25 t ha?1 in old-growth E. delegatensis forests. The rapid re-accumulation of litter after fire is not the result of any significant change in litterfall rate, but is due to a marked reduction in the total amount of litter decomposing—and this reduction is more a consequence of a decrease in the weight of the forest floor than to any fire-induced lowering of the rate of litter decomposition. The rapid build-up of litter is a consequence of the relatively high rates of litterfall (3.4–5.0 t ha?1 year?1) and low rates of litter decomposition (k = 0.19–0.32 year?1) in these forests. In most cases the pattern of litter accumulation was well described by an exponential equation of the form Xt= Xss (1—e-kt), where Xt is the weight (t ha?1) of litter accumulated at time t (year). Xss is the weight of litter accumulated under steady-state conditions, and k is a decomposition rate constant (year?1). Marked temporal variations in annual litterfall and mass of accumulated litter were found at specific forest sites which had been unburnt for more than 4.5 years. Variation from the long-term mean was greater for litterfall (31–37%) than for accumulated litter (14–26%). The maximum error when calculating decomposition rate (k) as the ratio of annual litterfall: accumulated titter, when based on single measurements of these parameters, ranged from 43 to 69% of that based on long-term measurements. Decomposition rates of the entire titter layer, calculated for periods of 22–79 months, and based on measurements of litter input and change in mass of accumulated titter, were positively correlated with the average number of days per month during each period that the litter layer remained moist (>approx. 60% ODW). The implications of these findings for fire management planning in sub-alpine and other eucalypt forests are briefly discussed.  相似文献   

11.
不同林分类型毛竹林节肢动物群落的多样性与稳定性   总被引:2,自引:0,他引:2  
通过2001年9月到2002年7月对毛竹Phyllostachys heterocycla cv. pubescens与杉木Cunninghamia lanceolata、毛竹与马尾松Pinus massoniana、毛竹与阔叶树种混交林和毛竹纯林中节肢动物群落的定位与跟踪调查,分析和比较了上述4种不同类型林分中节肢动物群落的多样性与稳定性。结果表明:竹阔混交林中节肢动物群落的丰富度显著高于其他2种混交林和毛竹纯林,主要体现为林下层中同翅目、半翅目、鞘翅目和双翅目及竹冠层中蜱螨目、同翅目、半翅目和鞘翅目等植食性或捕食性物种明显较多;但各类林分中节肢动物群落之间的物种多样性、均匀度和优势集中性无显著差异。总体上混交林竹冠层和林下层中植食性和捕食性功能群的共有种较多,两个层次间的相似性均高于毛竹纯林。不同林分类型中节肢动物群落的稳定性具有显著差异,竹阔混交林和毛竹纯林竹冠层节肢动物类群的稳定性低,天敌对害虫的控制作用小,毛竹叶部植食性螨类和蠕须盾蚧Kuwanaspis vermiformis危害较重。因此认为在两种(类)害虫常发区,可考虑将林分改造为竹杉混交林或竹松混交林。  相似文献   

12.
Changes in foliage density distribution with altitude and its effect on shoot growth and flowering were studied in forest section planes (profiles) of subalpine forests and scrubs (Krummholz) in Nepal and Japan.Patterns of foliage in forest canopy were evaluated by an analysis of variance. Foliage densities were very high at high altitude canopies, but the change in spatial patterns along altitude differs in both areas.The spatial pattern of new shoot production was similar to that of current foliage density and was affected by the amount of foliage above the sample probably through light condition. Flowering of tall trees occurred in the surface of the upper canopy, but a shrub species flowered even under tree canopies.  相似文献   

13.
不同林分类型对昆虫群落多样性的影响   总被引:1,自引:0,他引:1  
为研究近自然森林经营下的华北落叶松人工林不同林分类型对昆虫群落多样性的影响,以塞罕坝自然保护区内的华北落叶松纯林和混交林作为研究对象,对6种不同林分类型中的昆虫群落结构进行了研究。共获得昆虫标本9542头,隶属于7目,68科,187种,以双翅目、半翅目和鞘翅目为优势类群。研究结果表明:6种林分类型中的昆虫在物种和个体数上存在差异,相似性分析显示群落结构均不相似;群落多样性指数分析表明华北落叶松纯林和其它类型的混交林均具有较高的丰富度指数和多样性指数;主成分分析表明各林分类型中捕食性类群和寄生性类群是影响昆虫群落结构的主要因素,且捕食性类群和寄生性类群对植食性类群的控制作用较强;稳定性分析显示6种林分类型昆虫群落结构均具有较高的稳定性。  相似文献   

14.
Estimates suggest that perhaps 40% of all invertebrate species are found in tropical rainforest canopies. Extrapolations of total diversity and food web analyses have been based almost exclusively on species inhabiting the foliage, under the assumption that foliage samples are representative of the entire canopy. We examined the validity of this assumption by comparing the density of invertebrates and the species richness of beetles across three canopy microhabitats (mature leaves, new leaves and flowers) on a one hectare plot in an Australian tropical rainforest. Specifically, we tested two hypotheses: 1) canopy invertebrate density and species richness are directly proportional to the amount of resource available; and 2) canopy microhabitats represent discrete resources that are utilised by their own specialised invertebrate communities. We show that flowers in the canopy support invertebrate densities that are ten to ten thousand times greater than on the nearby foliage when expressed on a per-unit resource biomass basis. Furthermore, species-level analyses of the beetle fauna revealed that flowers support a unique and remarkably rich fauna compared to foliage, with very little species overlap between microhabitats. We reject the hypothesis that the insect fauna on mature foliage is representative of the greater canopy community even though mature foliage comprises a very large proportion of canopy plant biomass. Although the significance of the evolutionary relationship between flowers and insects is well known with respect to plant reproduction, less is known about the importance of flowers as resources for tropical insects. Consequently, we suggest that this constitutes a more important piece of the ‘diversity jigsaw puzzle’ than has been previously recognised and could alter our understanding of the evolution of plant-herbivore interactions and food web dynamics, and provide a better foundation for accurately estimating global species richness.  相似文献   

15.
为研究近自然森林经营下的樟子松人工林不同林分类型对昆虫群落多样性的影响,本文以塞罕坝自然保护区内的樟子松纯林与混交林作为研究对象,对5种林分类型(樟子松、樟子松-落叶松、樟子松-白桦、樟子松-山荆子、樟子松-落叶松-白桦-山荆子-山刺玫)中的昆虫多样性进行分析.共获得昆虫标本9617头,隶属于7目70科195种,以双翅目、半翅目和鞘翅目为优势类群.5种不同林分类型中的昆虫物种均比较丰富,且各林分类型之间的昆虫群落结构均处于中等不相似水平,樟子松混交林内的昆虫物种数和个体数均高于纯林,但昆虫群落特征指数在不同林分类型之间无显著差异.主成分分析显示,植食性类群、捕食性类群和寄生性类群是构成昆虫群落结构的主要成分,且捕食性和寄生性等天敌类群对植食性类群的制约作用较强,各林分内昆虫群落结构均具有较高的稳定性.  相似文献   

16.
Abstract Foliar insect damage levels on woody sprouts in the ground layer of two tropical eucalypt forest communities on Melville Island were between 7.8 and 43.2%. Of eight common tree species, Eucalyptus confertiflora was damaged most by insects and Buchanania obovata and Terminalia ferdinandiana the least. Seasonal trends in insect damage were not consistent between plant species and were not always consistent between vegetation types for a particular plant species. The results of this study are not consistent with hypotheses suggesting that insect grazing is a critical determinant of tree species dominance or woody sprout dormancy.  相似文献   

17.
Yves Basset 《Oecologia》2001,129(2):253-260
The arthropod fauna of 25 saplings and of three conspecific mature trees of Pourouma bicolor (Cecropiaceae) was surveyed for 12 months in a tropical wet forest in Panama, with particular reference to insect herbivores. A construction crane erected at the study site provided access to tree foliage in the upper canopy. A similar area of foliage (ca. 370 m2) was surveyed from both saplings and trees, but samples obtained from the latter included 3 times as much young foliage as from the former. Arthropods, including herbivores and leaf-chewing insects with a proven ability to feed on the foliage of P. bicolor were 1.6, 2.5 and 2.9 times as abundant on the foliage of trees as on that of saplings. The species richness of herbivores and proven chewers were 1.5 (n=145 species) and 3.5 (n=21) times higher on trees than on saplings, respectively. Many herbivore species preferred or were restricted to one or other of the host stages. Host stage and young foliage area in the samples explained 52% of the explained variance in the spatial distribution of herbivore species. Pseudo-replication in the two sampling universes, the saplings and trees studied, most likely decreased the magnitude of differences apparent between host stages in this forest. The higher availability of food resources, such as young foliage, in the canopy than in the understorey, perhaps combined with other factors such as resource quality and enemy-free space, may generate complex gradients of abundance and species richness of insect herbivores in wet closed tropical forests.  相似文献   

18.
Abstract The deep lateritic earths that cap the serpentinite outcrop in the Rockhampton – Marlborough area on the Tropic of Capricorn in Central Queensland have been eroded to expose the underlying ultramafic rock. Water‐holding capacity of these nutrient‐poor soils increases in a gradient from the skeletal soils to the deep lateritic earths and results in a continuum of structural formations from open‐woodland to woodland to open‐forest. A couple of closed‐forest (rainforest) stands have developed where seepage into Marlborough Creek occurs throughout the year. Aerodynamic fluxes (frictional, thermal and evaporative) in the atmosphere as it flows over and through the vegetation influence the annual foliage growth in all strata in the continuum from skeletal soils to deep lateritic earths. The lateral growth of each plant is abraded so that the sum of the foliage projective covers of overstorey (FPCo) and understorey (FPCu) strata – that is Σ(FPCo + FPCu) – remains constant throughout the serpentinite soil catena. As more water becomes available in the soil catena, the mineral nutrient levels in overstorey leaves increase, making developing leaves more vulnerable to insect attack. Although the number of leaves produced annually on each vertical foliage shoot in the overstorey increases along the soil‐water gradient, Σ(FPCo + FPCu) remains constant in all stands. The carbon isotope ratios (a measure of stomatal resistance) and leaf specific weights (LSWs) (a measure of the proportion of structural to cytoplasmic content in a leaf) of overstorey and understorey strata, however, are constant throughout the continuum. The well‐watered rainforest pockets – where seepage occurs – form the end point of this serpentinite continuum. LSWs and carbon isotope ratios of the canopy trees are similar to those in the sheltered understorey in the eucalypt communities. A gradient of foliage attributes is observed from evergreen canopy trees (12 m) to subshrubs (2 m) in the sunlit life forms that compose the complex structure of the rainforest stands in the humid to subhumid climate of Central Queensland. As alpha diversity (number of species per hectare) is correlated with annual shoot growth per hectare, species richness along the serpentinite continuum is almost half that of nearby plant communities on medium‐nutrient soils. The one to two eucalypt species per hectare are about a tenth of the number recorded on adjacent medium‐nutrient soils.  相似文献   

19.
Summary A determination was made of the differences in the utilization of energy by laboratory reared larval Choristoneura fumiferana fed either balsam fir or white spruce foliage. This enabled us to quantitatively measure the quality of these foliages vis a vis the spruce budworm.The larval strategy was to feed rapidly and develop quickly. Development time was longer on spruce than on fir. Total consumption was virtually identical on both foliage types though production was ca 20% greater on a white spruce diet. Calories/gram increased with insect development and with the development of balsam fir foliage but declined over time in white spruce. Assimilation efficiencies (A/C) were 33.9% to 40.2% while gross production efficiencies (P/C) were 9.5% to 13.3% and net production efficiencies (P/A) were 26.1% to 38.8%. The spruce fed insects gave higher values than those on fir, but all values were at the low end of the range for lepidopterous defoliators (possibly due to characteristics of conifer foliage).The enhanced growth found in spruce fed larvae contrasts the relationship between balsam fir and high insect densities. This is discussed together with the influence of spruce budworm on forest composition and the possible competitive benefits of spruce budworm induced tree mortality.Parts of this paper appeared in a Master's thesis (Koller 1978) submitted to the University of Maine  相似文献   

20.
Exotic insect pests may strongly disrupt forest ecosystems and trigger major shifts in nutrient cycling, structure, and composition. We examined the relationship between these diverse effects for the hemlock woolly adelgid (HWA, Adelges tsugae Annand) in New England forests by studying its impacts on local canopy processes in stands differing in infestation levels and linking these impacts to shifts in canopy nutrient cycling and stand and landscape effects. HWA initiated major changes in canopy biomass and distribution. Whereas uninfested trees exhibit a significant decline in canopy biomass from the center to the periphery and a positive correlation between total needle litter and estimated biomass, infested trees have significantly less total canopy biomass, produce less new foliage, shed relatively more needles, and exhibit no correlation between litter and canopy biomass. Foliar N content of infested trees was 20%–40% higher than reference trees, with the strongest increase in young foliage supporting the highest densities of HWA. Foliar %C was unaffected by HWA or foliar age. Epiphytic microorganisms on hemlock needles exhibited little variation in abundance within canopies, but colony-forming units of bacteria, yeast, and filamentous fungi were 2–3 orders of magnitude more abundant on medium and heavily infested than uninfested trees. Throughfall chemistry, quantity, and spatial pattern were strongly altered by HWA. Throughfall exhibits a strong gradient beneath uninfested trees, decreasing in volumes from the canopy periphery to the trunk by more than 45%. The amount of throughfall beneath infested trees exhibits no spatial pattern, reaches 80%–90% of the bulk precipitation, and is characterized by significantly higher concentrations of nitrogen compounds, dissolved organic carbon, and cations. Across the southern New England landscape there is a strong south-to-north gradient of decreasing hemlock tree and sapling mortality and understory compositional change that corresponds to the duration of infestation. Regionally, black birch (Betula lenta L.) is profiting most from hemlock decline by significantly increasing in density and cover. These findings suggest that it is necessary to study the connections between fast/small-scale processes such as changes in nutrient cycling in tree canopies and slow/integrative processes like shifts in biogeochemieal cycling and compositional changes at forest stands and landscapes to better understand the effects of an exotic pest species like HWA on forest ecosystem structure and function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号