首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Concanavalin A (Con A), wheat germ agglutinin (WGA), and Ricinus communis agglutinin (RCA) bound with either 125I, fluorescent dyes, or fluorescent polymeric microspheres were used to quantitate and visualize the distribution of lectin binding sites on mouse neuroblastoma cells. As viewed by fluorescent light and scanning electron microscopy, over 107 binding sites for Con A, WGA, and RCA appeared to be distributed randomly over the surface of differentiated and undifferentiated cells. An energy-dependent redistribution of labeled sites into a central spot occurred when the cells were labeled with a saturating dose of fluorescent lectin and maintained at 37°C for 60 min. Reversible labeling using appropriate saccharide inhibitors indicated that the labeled sites had undergone endocytosis by the cell. A difference in the mode of redistribution of WGA or RCA and Con A binding sites was observed in double labeling experiments. When less than 10% of the WGA or RCA lectin binding sites were labeled, only these labeled sites appeared to be removed from the cell surface. In contrast, when less than 10% of the Con A sites were labeled, both labeled and unlabeled Con A binding sites were removed from the cell surface. Cytochalasin B uncoupled the coordinate redistribution of labeled and unlabeled Con A sites, suggesting the involvement of microfilaments. Finally, double labeling experiments employing fluorescein-tagged Con A and rhodamine-tagged WGA indicate that most Con A and WGA binding sites reside on different membrane components and redistribute independenty of each other.  相似文献   

2.
Summary Isolated competent amphibian ectoderm differentiates into neural (archencephalic) structures when treated with the plant lectin concanavalin A (Con A). While the inner ectoderm layer ofXenopus laevis forms brain structures after incubation with Con A, the outer ectoderm layer differentiates into ciliated epidermis only. This difference can be correlated with the pattern of Con A bound to the plasma membrane. With gold-labelled Con A it could be shown by transmission electron microscopy (TEM) that the outer ectoderm binds substantially less lectin than the inner layer. Furthermore we observed characteristic differences at the apical and basal surfaces of the cells of the same layer, i.e. on the apical cell surface of the superficial layer almost no Con A-gold could be found. In contrast, we observed a lot of gold particles on the basal cell side of the superficial layer. However, the number on both surfaces (apical and basal side of the cell) of the inner ectoderm layer was essentially higher, which could explain its biological reaction to the Con A stimulus and the differentiation into neural structures. The data presented in this paper indicate that early and late gastrula ectoderm bind similar amounts of Con A and support the view that the decrease in competence is not correlated with a loss of receptors for inducing factors. Furthermore, we describe the binding and the internalization of Con A via receptor-mediated endocytosis and the further fate of the Con A-gold-receptor complex inside the target cell.  相似文献   

3.
Pieces of coverslip glass coated with various proteins were implanted under one edge of a fresh skin wound on adult newt hind limbs so that the implant served as wound bed for migrating epidermal cells as they attempted to form a wound epithelium. Despite the fact that concanavalin A (Con A) receptors could be demonstrated on newt epidermal cells with fluorescein isothiocyanate (FITC)-conjugated lectin, Con A-coated implants supported practically no migration, an even poorer response than the modest amount of migration that occurred on uncoated glass. Coomassie blue staining verified that the lectin formed a complete film over the glass, and peroxidase binding assays showed that even after several hours in the wound, the Con A binding sites for mannose were still available. Migration on fibrinogen-coated glass (a good migration substrate) was not affected by placing the implants next to Con A-coated implants. Thus, the failure to migrate on Con A cannot be explained by soluble Con A effects from lectin leaching off the implants. These data suggest that linkages between cell surface mannose and the substrate are not part of the strategy by which newt epidermal cells migrate.  相似文献   

4.
Abstract. A possible role for cytoplasmic microtubules in modulating lectin binding site topography has been examined during the hormone-directed differentiation of rat ovarian granulosa cells in vitro. Indirect immunofluorescence staining with anti-tubulin antibodies indicates that undifferentiated cultured granulosa cells contain a network of microtubules which radiate from the cell center to the cell periphery. Cultures induced to differentiate by a three day treatment with 1 μg/ml prolactin exhibit a marginal distribution of microtubules and a centrally-located primary cilium. Prolactin enhances the incidence of granulosa cells containing a primary colium from 9% in undifferentiated cultures to 53% in hormone-treated cultures. The pattern of lectin binding site redistribution induced by Concanavalin A (Con A) is also modified by prolactin treatment. In contrast to undifferentiated cells, which randomly endocytose fluorescein Con A, granulosa cells exposed to prolactin respond to fluorescein Con A by forming central surface caps to a greater extent (75%) than undifferentiated controls (25%). Double label fluorescence microscopy and transmission electron microscopy on Con A labeled cells show that caps form at central cell surface sites which contain the primary cilium. Disruption of cytoplasmic microtubules by colchicine, in undifferentiated granulosa cells, results in the formation of cell surface caps upon Con A addition. These data suggest that cytoplasmic microtubules modulate the topography of lectin bindings sites which is subject to hormonal control during the in vitro differentiation of ovarian granulosa cells.  相似文献   

5.
The PC12 cell line displays cell surface receptors for both nerve growth factor (NGF) and epidermal growth factor (EGF). It has been previously shown that the lectin wheat germ agglutinin (WGA) alters the properties of NGF receptors on these cells. We now report that preincubations with either WGA or concanavalin A (Con A) decrease the binding of 125I-EGF to PC12 cells by greater than 50%. The inhibition of binding occurred at 37°C and 4°C and could be blocked or reversed by the addition of sugars which bind specifically to WGA or Con A. Scatchard analysis revealed that these lectins decreased binding primarily by lowering the affinity of the receptor and to a lesser extent by decreasing receptor number. Succinylalion of Con A (sCon A) produced a derivative that was less effective than the native lectin in decreasing EGF binding; however, addition of an antibody against Con A restored the ability of sCon A to decrease binding. Similar to results obtained with 125I-NGF binding, WGA but not Con A was found to increase, by scveralfold; the proportion of 125I-EGF binding that is resistant to solubilization by Triton X-100 detergent. A potential association of the EGF receptor with cytoskeletal elements is discussed which could account for such results.  相似文献   

6.
A possible role for cytoplasmic microtubules in modulating lectin binding site topography has been examined during the hormone-directed differentiation of rat ovarian granulosa cells in vitro. Indirect immunofluorescence staining with anti-tubulin antibodies indicates that undifferentiated cultured granulosa cells contain a network of microtubules which radiate from the cell center to the cell periphery. Cultures induced to differentiate by a three day treatment with 1 microgram/ml prolactin exhibit a marginal distribution of microtubules and a centrally-located primary cilium. Prolactin enhances the incidence of granulosa cells containing a primary cilium from 9% in undifferentiated cultures to 53% in hormone-treated cultures. The pattern of lectin binding site redistribution induced by Concanavalin A (Con A) is also modified by prolactin treatment. In contrast to undifferentiated cells, which randomly endocytose fluorescein Con A, granulosa cells exposed to prolactin respond to fluorescein Con A by forming central surface caps to a greater extent (75%) than undifferentiated controls (25%). Double label fluorescence microscopy and transmission electron microscopy on Con A labeled cells show that caps form at central cell surface sites which contain the primary cilium. Disruption of cytoplasmic microtubules by colchicine, in undifferentiated granulosa cells, results in the formation of cell surface caps upon Con A addition. These data suggest that cytoplasmic microtubules modulate the topography of lectin bindings sites which is subject to hormonal control during the in vitro differentiation of ovarian granulosa cells.  相似文献   

7.
It has been demonstrated that specific changes in carbohydrate-containing cell surface lectin receptor sites occur with differentiation and maturation of sea urchin embryo cells. In this study, evidence is presented, using a quantitative electronic particle counter assay to measure agglutination, which indicates that concanavalin A (Con A) mediated agglutination of dissociated 32/64 cell sea urchin embryos differs dramatically with respect to specific cell populations. The migratory cell type, the micromere, is significantly more agglutinable with Con A than the other cell types and colchicine treatment markedly increases sea urchin embryo cell agglutinability. The results indicate that like many malignant cells which display extensive migratory behavior, specific migratory populations of embryonic cells are agglutinable with Con A. The results are discussed with respect to the possible nature of lectin receptor sites on specific populations of embryonic cells and the possible role of colchicine-sensitive structures in controlling the display patterns of these sites.  相似文献   

8.
The morphology, life history, and the geographical distribution of Spongomorpha spiralis Sakai in Hokkaido, Japan, was studied. The thallus is characterized by its digitate tufts (bundles) of slender filaments with hooked branchlets. The diameter of the filaments is usually 20-50 μm in the basal portion, 50-130 (70-110) μm in the middle portion of main axes, and 30-150 μm in the upper portion. The diameter of the middle portion of the main axes varies from locality to locality. At Muroran, for example, the range is 70-130 μm (average approximately 100 μm), while at other localities it is 50–100 μm (average approximately 70 μm). The diameter of filaments in the upper portion decreases toward the end of the growing season. The cells are multinucleate with four chromosomes in each nucleus of the haploid plant. The manner of cell division is identical to the process reported previously for the Spongomorpha-Acrosiphonia complex. Sexual reproduction is isogamous with anteriorly biflagellate gametes. Plants are unisexual. The life history involves an alternation of heteromorphic generations: the gametophytic phase is a macroscopic, filamentous thallus and the sporophytic phase is a microscopic, ellipsoidal or club-shaped cell. Optimal culture condition for growth and reproduction of both stages was 5°C and long daylength. The gametophyte developed abnormally at 15°C. The sporophyte developed normally at 15°C, but did not produce zoospores.  相似文献   

9.
It has been demonstrated that specific changes in carbohydrate-containing cell surface lectin receptor sites occur with differentiation and maturation of sea urchin embryo cells. In this study, evidence is presented, using a quantitative electronic particle counter assay to measure agglutination, which indicates that concanavalin A (Con A) mediated agglutination of dissociated 3264 cell sea urchin embryos differs dramatically with respect to specific cell populations. The migratory cell type, the micromere, is significantly more agglutinable with Con A than the other cell types and colchicine treatment markedly increases sea urchin embryo cell agglutinability. The results indicate that like many malignant cells which display extensive migratory behavior, specific migratory populations of embryonic cells are agglutinable with Con A. The results are discussed with respect to the possible nature of lectin receptor sites on specific populations of embryonic cells and the possible role of colchicine-sensitive structures in controlling the display patterns of these sites.  相似文献   

10.
An N-acetylgalactosamine (GalNAc)-specific Ca2+-dependent lectin (C-type lectin), isolated from the marine invertebrate Holothuroidea (Cucumaria echinata), CEL-I, showed potent mitogenic activity toward normal mouse spleen cells. The mitogenic activity of CEL-I, which reached a maximum at 100 μg/ml, was inhibited by GalNAc in a concentration-dependent manner. The mitogenic effect of CEL-I at 10 μg/ml on T cell- enriched splenocytes was at a similar level due to a well-known T cell mitogen, concanavalin A (Con A), at 10 μg/ml. Furthermore, CEL-I evoked a mitogenic response from nude mouse spleen cells, while no significant effects of Con A on this cell population were observed over a wide range of concentrations. These results suggest that CEL-I is a potent mitogenic lectin with the ability to stimulate both T and B cells.  相似文献   

11.
Bloodstream trypomastigote and culture procyclic (insect midgut) forms of a cloned T. rhodesiense variant (WRATat 1) were tested for agglutination with the lectins concanavalin A (Con A), phytohemagglutinin P (PP), soybean agglutinin (SBA), fucose binding protein (FBP), wheat germ agglutinin (WGA), and castor bean lectin (RCA). Fluorescence-microscopic localization of lectin binding to both formalin-fixed trypomastigotes and red cells was determined with fluorescein isothiocyanate (FITC)-conjugated Con A, SBA, FBP, WGA, RCA, PNA (peanut agglutinin), DBA (Dolichos bifloris), and UEA (Ulex europaeus) lectins. Electron microscopic localization of lectin binding sites on bloodstream trypomastigotes was accomplished by the Con A-horseradish peroxidase-diaminobenzidine (HRP-DAB) technique, and by a Con A-biotin/avidin-ferritin method. Trypomastigotes, isolated by centrifugation or filtration through DEAE-cellulose or thawed after cryopreservation, were agglutinated by the lectins Con A and PP with agglutination strength scored as Con A < PP. No agglutination was observed in control preparations or with the lectins WGA, FBA or SBA. Red cells were agglutinated by all the lectins tested. Formalin-fixed bloodstream trypomastigotes bound FITC-Con A and FITC-RCA but not FITC-WGA, -SBA, -PNA, -UEA or -DBA lectins. All FITC-labeled lectins bound to red cells. Con A receptors, visualized by Con A-HRP-DAB and Con A-biotin/avidin-ferritin techniques, were distributed uniformly on T. rhodesiense bloodstream forms. No lectin receptors were visualized on control preparations. Culture procyclics lacked a cell surface coat and were agglutinated by Con A and WGA but not RCA, SBA, PP and FBP. Procyclics were not agglutinated by lectins in the presence of competing sugar at 0.25 M. The expression of lectin binding cell surface saccharides of T. rhodesiense WRATat 1 is related to the parasite stage. Sugars resembling α-D-mannose are on the surface of bloodstream trypomastigotes and culture procyclics; n-acetyl-D-galactosamine and D-galactose residues are on bloodstream forms; and n-acetyl-D-glucosamine-like sugars are on procyclic stages.  相似文献   

12.
The distribution of saccharide moieties in human interfollicular epidermis was studied with fluorochrome-coupled lectins. In frozen sections Concanavalin A (Con A), Lens culinaris agglutinin (LCA), Ricinus communis agglutinin I (RCAI), and wheat germ agglutinin (WGA) stained intensively both dermis and viable epidermal cell layers, whereas peanut agglutinin (PNA) bound only to living epidermal cell layers. Ulex europaeus agglutinin I (UEAI) bound to dermal endothelial cells and upper cell layers of the epidermis but left the basal cell layer unstained. Dolichos biflorus agglutinin (DBA) bound only to basal epidermal cells, whereas both soybean agglutinin (SBA) and Helix pomatia agglutinin (HPA) showed strong binding to the spinous and granular cell layers. On routinely processed paraffin sections, a distinctly different staining pattern was seen with many lectins, and to reveal the binding of some lectins a pretreatment with protease was required. All keratin-positive cells in human epidermal cell suspensions, obtained with the suction blister method, bound PNA, whereas only a fraction of the keratinocytes bound either DBA or UEAI. Such a difference in lectin binding pattern was also seen in epidermal cell cultures both immediately after attachment and in organized cell colonies. This suggests that in addition to basal cells, more differentiated epidermal cells from the spinous cell layer are also able to adhere and spread in culture conditions. Gel electrophoretic analysis of the lectin-binding glycoproteins in detergent extracts of metabolically labeled primary keratinocyte cultures revealed that the lectins recognized both distinct and shared glycoproteins. A much different lectin binding pattern was seen in embryonic human skin: fetal epidermis did not show any binding of DBA, whereas UEAI showed diffuse binding to all cell layers but gave a bright staining of dermal endothelial cells. This was in contrast to staining results obtained with a monoclonal cytokeratin antibody, which showed the presence of a distinct basal cell layer in fetal epidermis also. The results indicate that expression of saccharide moieties in human epidermal keratinocytes is related to the stage of cellular differentiation, different cell layers expressing different terminal saccharide moieties. The results also suggest that the emergence of a mature cell surface glycoconjugate pattern in human epidermis is preceded by the acquisition of cell layer-specific, differential keratin expression.  相似文献   

13.
The ability of insulin and epidermal growth factor (EGF) to restore cell surface function in cells damaged by serum deprivation has been examined. Both insulin (10?7 M) and EGF (10?8 M), when added for 2 h, resulted in reattachment of cells to the culture dish; with insulin, attachment was associated with increased amino acid uptake. Both hormones caused an increase in sialic acid and in free sulfhydryl groups associated with the cell membrane. The mobility of concanavalin A (Con A) on the upper cell surface was increased by EGF, and to a lesser extent by insulin. The effects of insulin and EGF on adhesion appear to be regulated by specific receptors for these hormones.  相似文献   

14.
Using fibroblastic CHO cells, we have examined (1) the internalization and redistribution of surface binding sites for the lectins Concanavalin A and wheat germ agglutinin and (2) the sensitivity of these processes to putative inhibitors of cytoskeletal activity. Following initial exposure to fluorescein conjugated Con A (CAF) or WGA (WGAF) at 4° C, kinetic analysis of internalization and intracellular aggregation of lectin at 37°C indicated more rapid aggregate formation in the case of WGA than in the case of Con A. Treatment with tertiary amine local anesthetics (tetracaine, dibucaine, and xylocaine) or with a lysosomatrophic amine, m-dansyl cadaverine, blocked internalization of Con A but not of WGA. Similar differential effects on redistribution of Con A and WGA were not however observed with the antimicrotubule agents colchicine and nocodazole. Simultaneous treatment of cells with WGAF and with rhodamine labeled Con A (CAR) resulted in the accumulation of both labels in a central perinuclear aggregate; a similar experiment in the presence of local anesthetic resulted in a diffuse peripheral distribution of CAR and a central aggregate of WGAF. These results suggest (1) CHO cells possess at least two distinct pathways for lectin internalization and redistribution, which can be discriminated in terms of drug sensitivity; (2) CHO cells can sort out and independently internalize different populations and lectin binding sites; and (3) different pathways may be a manifestation of biochemically distinct linkages between cytoskeletal elements and various groups of surface glycoproteins. Present findings concur with our previous results concerning the mutual independence of the surface binding sites for Con A and WGA (Emerson and Juliano, 1982).  相似文献   

15.
Summary Coupled ligand-colloidal gold complexes were found to provide a convenient approach for the localization by scanning electron microscopy of cell surface membrane antigens and lectin-binding sites on bladder urothelium and for the immunocytochemical identification of urothelial cell populations at different stages of differentiation. The ligands used to probe the membrane were a urothelium-specific rabbit antibody raised to a urothelial membrane-associated antigen (UMA), and two lectins: Concanavalin A (Con A) and peanut agglutinin (PNA). A complex luminal surface distribution pattern was demonstrated by the UMA antigen related to the stage of urothelial cell maturation and differentiation. UMA could be detected on the surface of immature and early differentiating intermediate cells, but was absent from the late differentiation stage, becoming re-expressed as the cells matured and was found in greatest abundance on the terminally differentiated superficial cells. It was absent on cells in benign hyperplasia of the urothelium. Cellular and regional differences in lectin binding to the urothelial cell surface was suggested with Con A receptors localized uniformly over the superficial cells, and PNA receptors confined to linear arrays or occasional clusters over the apical surface but evenly dispersed over the lateral surface of these cells.  相似文献   

16.
The phytohemagglutinin concanavalin A inhibited zygote formation of Chlamydomonas reinhardii. 15–50 μg lectin/ml not only interfered with the mating reaction, but also with cell wall lysis of gametes and zoospores in a crude autolysin preparation gained from copulating gametes. Further, the structure of cell walls shed into the medium after autolysis in the course of the mating reaction and after lysis “from without” in the crude autolysin preparation was stabilized by Con A. Therefore, it must be assumed that the lectin inhibited zygote formation of C. reinhardii by interfering with autolysis of the cell walls of the gametes. Though Con A inhibited the lytic processes of C. reinhardii, an activation of the autolytic system in ⊖ gametes by the lectin was found to compete with its inhibitory reaction. Con A induced autolysis of ⊖ gametes was dependent on adherence of the cells by their flagella to the surface of the culture vessel or the liquid medium and did not occur in cultures stirred by rotation. The interferences of Con A with the autolytic system of C. reinhardii were inhibited by methyl-α-d-mannopyranoside and to a lesser degree by glucose, indicating that the carbohydrate binding sites of the lectin were involved in its reactions with the cells.  相似文献   

17.
The plant lectin concanavalin A (Con A), at concentrations of 5–200 μg/ml, induced a twofold to fivefold increase in spontaneous beat rate of cultured aggregates of ventricular cells from seven-day chick embryos. This response was time, dose, and temperature dependent and was accompanied by a decrease in transmembrane potential. It could be blocked or reversed by α-methyl-D-mannoside but was not reversed by dilution alone. Binding of the lectin occurred in the cold, but a temperature-dependent process was also necessary to produce the response. Divalent (succinyl) Con A did not cause a beat rate increase. Whole heart aggregates responded similarly but less intensely than ventricular aggregates. Atrial aggregates, and whole heart aggregates treated with 5 μg/ml of Con A, produced a biphasic chronotropic response, first decreasing then increasing their beat rates. These results suggest that saccharide-bearing macromolecules on the heart cell surface play a role in regulating spontaneous beat rate.  相似文献   

18.
The ability of cells to bind to nylon fibers coated with lectin molecules interspaced with varying numbers of albumin molecules has been analyzed. The cells used were lymphoma cells, normal lymphocytes, myeloid leukemia cells, and normal and transformed fibroblasts, and the fibers were coated with different densities of concanavalin A or the lectins from soybean or wheat germ. Cells fixed with glutaraldehyde did not bind to lectin-coated fibers. The number of cells bound to fibers could be increased by increasing the density of lectin molecules on the fiber, the density of specific receptors on the cell, or the mobility of the receptors. It is suggested that binding of cells to fibers involves alignment and binding of specific cell surface receptors with lectin molecules immobilized on the fibers, and that this alignment requires short-range rapid lateral mobility (RLM) of the receptors. The titration of cell binding to fibers coated with different densities of lectin and albumin has been used to measure the relative RLM of unoccupied cell surface receptors for the lectin. The results indicate a relationship of RLM to lectin-induced cell-to-cell binding. The RLM or receptors for concanavalin A (Con A) was generally found to be higher than that of receptors for the lectins from wheat germ or soybean. Receptor RLM could be decreased by use of metabolic inhibitors or by lowering the temperature. Receptors for Con A had a lower RLM on normal fibroblasts than on SV40-transformed fibroblasts, and trypsinization of normal fibroblasts increased Con A receptor RLM. Normal lymphocytes, lymphoma cells, and lines of myeloid leukemia cells that can be induced to differentiate had a high receptor RLM, whereas lines of myeloid leukemia cells that could not be induced to differentiate had a low receptor RLM. These results suggest that the RLM of Con A receptors is related to the transformation of fibroblasts and the ability of myeloid leukemia cells to undergo differentiation  相似文献   

19.
Developmental changes in cell surface and cytoskeletal elements have been studied in human promyelocytic leukemia cells (line HL-60) which differentiate into functionally mature myeloid cells when grown in dimethyl sulfoxide (DMSO)-supplemented medium. Both differentiated and undifferentiated HL-60 cells bind fluorescent concanavalin A (F-Con A) in a diffuse pattern over the entire cell surface. As with normal neutrophils, pretreatment of the differentiated HL-60 cells with colchicine before incubation with Con A causes the formation of large cytoplasmic protrusions over which the lectin associates into a cap. On the other hand, similarly treated undifferentiated HL-60 cells do not form the cytoplasmic protuberances and are unable to cap the Con A. Transmission electron microscopy reveals that the number and distribution of microtubules and microfilaments change during differentiation. Thus, developing myeloid cells undergo important alterations in the structure and function of the cytoskeleton as they differentiate into mature phagocytes.  相似文献   

20.
Using transmission electron microscopy, we have studied the interaction of alpha 2 macroglobulin (alpha 2 M) with the surface of cultured fibroblasts. When cells were incubated for 2 h at 4 degrees C with ferritin-conjugated alpha 2 M, approximately 90% of the alpha 2 M was diffusely distributed on the cell surface, and the other 10% was concentrated in "coated" pits. A pattern of diffuse labeling with some clustering in "coated" pits was also obtained when cells were incubated for 5 min at 4 degrees C with alpha 2 M, fixed with glutaraldehyde, and the alpha 2 M was localized with affinity-purified, peroxidase-labeled antibody to alpha 2 M. Experiments in which cells were fixed with 0.2% paraformaldehyde before incubation with alpha 2 M showed that the native distribution of alpha 2 M receptors was entirely diffuse without significant clustering in "coated" pits. This indicates that some redistribution of the alpha 2 M-receptor complexes into clusters occurred even at 4 degrees C. In experiments with concanavalin A(Con A), we found that some of the Con A clustered in coated regions of the membrane and was internalized in coated vesicles, but much of the Con A was directly internalized in uncoated vesicles or pinosomes. We conclude that unoccupied alpha 2 M receptors are diffusely distributed on the cell surface. When alpha 2 M-receptor complexes are formed, they rapidly cluster in coated regions or pits in the plasma membrane and subsequently are internalized in coated vesicles. Because insulin and epidermal growth factor are internalized in the same structures as alpha 2 M (Maxfield, F.R., J. Schlessinger, Y. Schechter, I. Pastan, and M.C. Willingham. 1978. Cell, 14: 805--810.), we suggest that all peptide hormones, as well as other proteins that enter the cell by receptor-mediated endocytosis, follow this same pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号