首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 601 毫秒
1.
Kurusu M  Cording A  Taniguchi M  Menon K  Suzuki E  Zinn K 《Neuron》2008,59(6):972-985
In Drosophila embryos and larvae, a small number of identified motor neurons innervate body wall muscles in a highly stereotyped pattern. Although genetic screens have identified many proteins that are required for axon guidance and synaptogenesis in this system, little is known about the mechanisms by which muscle fibers are defined as targets for specific motor axons. To identify potential target labels, we screened 410 genes encoding cell-surface and secreted proteins, searching for those whose overexpression on all muscle fibers causes motor axons to make targeting errors. Thirty such genes were identified, and a number of these were members of a large gene family encoding proteins whose extracellular domains contain leucine-rich repeat (LRR) sequences, which are protein interaction modules. By manipulating gene expression in muscle 12, we showed that four LRR proteins participate in the selection of this muscle as the appropriate synaptic target for the RP5 motor neuron.  相似文献   

2.
Growth of inhibitory innervation in a lobster muscle   总被引:2,自引:0,他引:2  
The fine structure of inhibitory innervation to a limb muscle was examined in larval, juvenile, and adult lobsters. The innervation is essentially similar in qualitative features among these different stages, although there are some marked quantitative changes associated with growth. From being localized to discrete regions in the larval muscle, the inhibitory innervation spreads to groups of muscle fibers in the early juvenile muscle and to single fibers in the late juvenile and adult muscles. Concurrently, its neuromuscular synapses enlarge in area, become perforated, and acquire more active sites of transmitter release. Inhibitory nerve terminals occur in close proximity to their excitatory counterparts in the muscles of larval and early juvenile stages, although in later stages this juxtaposition occurs preferentially in some muscle fibers but not others. The inhibitory innervation is, nevertheless, much more restricted in occurrence than is the excitatory innervation.  相似文献   

3.
There are two pairs of muscles in each abdominal segment of the crab; one pair of flexors and one pair of extensors. In the early larval stages the muscles have short sarcomeres--a property of fast fibers--and high thin to thick filament ratios--a property of slow fibers. In the adult the abdominal muscles are intermediate and slow, since they have fibers with intermediate and long sarcomeres, high thin to thick filament ratios, low myofibrillar ATPase activity, and high NADH diaphorase activity. The different fiber types are regionally distributed within the flexor muscle. Microelectrode recordings from single flexor muscle fibers in the adult showed that most fibers are supplied by three excitatory motor axons, although some are supplied by as many as five efferents. One axon supplies all of the flexor muscle fibers in its own hemisegment, and the evoked junctional potentials exhibit depression. This feature together with the innervation patterns of the fibers are similar to those reported for the deep flexor muscles of crayfish and lobsters. Therefore, in the adult crab, the abdominal flexor muscles have some features in common with the slow superficial flexors of crayfish and other features in common with the fast deep flexor muscles.  相似文献   

4.
Two opposing muscle systems underlie abdominal contractions during escape swimming in crayfish. In this study we used extracellular and intracellular stimulation, recording and dye-filling to systematically identify each of the five deep extensor excitors and single inhibitor of the crayfish, Cherax destructor. Functional associations of each neuron were characterised by recording its responses to sensory and abdominal cord inputs, its extensor muscle innervation pattern, and its relationships with other neurons. Each excitor receives excitatory input from the tonic abdominal stretch receptors and the largest neuron also receives input from the phasic stretch receptor. The two largest excitors innervate the muscle bundle containing the fastest fibres and may be electronically coupled. The smaller neurons may also be electronically coupled and innervate the remaining deep extensor fibres which display dynamic characteristics from fast to medium-fast. The inhibitor does not receive input from the stretch receptors, but is strongly excited by tactile afferents. The implications of these findings for the current models of the control of abdominal tailflips and swimming are discussed. Accepted: 21 June 1998  相似文献   

5.
Summary The temperature-sensitive mutation shibire (shi) in Drosophila melanogaster is thought to disrupt membrane recycling processes, including endocytotic vesicle pinch-off. This mutation can perturb the development of nerves and muscles of the adult escape response. After exposure to a heat pulse (6 h at 30° C) at 20 h of pupal development, adults have abnormal flight muscles. Wing depressor muscles (DLM) are reduced in number from the normal six to one or two fibers, and are composed of enlarged fibers that appear to represent fiber fusion; large spaces devoid of muscle fibers suggested fiber deletion. The normal five motor axons are present in the peripheral nerve PDMN near the ganglion. However, while some motor axons pass dorsally to the extant fibers, other motor axons lacking end targets pass into an abnormal posterior branch and terminate in a neuroma, i.e., a tangle of axons and glia without muscle target tissue. Hemisynapses are common in axons of the proximal PDMN and within the neuroma, but they are rarely seen in control (no heat pulse) shi or wild-type flies. All surviving muscle fibers are innervated; no muscle tissue exists without innervation. Fibrillar fine structure and neuromuscular synapses appear normal. Fused fibers have dual innervation, suggesting correct and specific matching of target tissue and motor axons. Motor axons lacking target fibers do not innervate erroneous targets but instead terminate in the neuroma. These results suggest developmental constraints and rules, which may contribute to the orderly, stereotyped development in the normal flight system. The nature of the anomalies inducible in the flight motor system in shi flies implies that membrane recycling events at about 20 h of pupal development are critical to the formation of the normal adult nerve-muscle pattern for DLM flight muscles.  相似文献   

6.
To elucidate neural mechanisms underlying walking and jumping in insects, motor neurons supplying femoral muscles have been identified mainly in locusts and katydids, but not in crickets. In this study, the motor innervation patterns of the metathoracic flexor and extensor tibiae muscles in the cricket, Gryllus bimaculatus were investigated by differential back-fills and nerve recordings. Whereas the extensor tibiae muscle has an innervation pattern similar to that of other orthopterans, the flexor has an innervation unique to this species. The main body of the flexor muscle is divided into the proximal, middle and distal regions, which receive morphologically unique terminations from almost non-overlapping sets of motor neurons. The proximal region is innervated by about 12 moderate-sized excitatory motor neurons and two inhibitory neurons while the middle and distal regions are innervated by three and four large excitatory motor neurons, respectively. The most-distally located accessory flexor muscle, inserting on a common flexor apodeme with the main muscle, is innervated by at least four small excitatory (slow-type) and two common inhibitory motor neurons. The two excitatory and two inhibitory motor neurons that innervate the accessory flexor muscle also innervate the proximal bundles of the main flexor muscle. This suggests that the most proximal and distal parts of the flexor muscle participate synergistically in fine motor control while the rest participates in powerful drive of tibial flexion movement.  相似文献   

7.
1. Responses of motor neurons in larvae and pupae of Manduca sexta to stimulation of tactile sensory neurons were measured in both semi-intact, and isolated nerve cord preparations. These motor neurons innervate abdominal intersegmental muscles which are involved in the production of a general flexion reflex in the larva, and the closure reflex of the pupal gin traps. 2. Larval motor neurons respond to stimulation of sensory neurons innervating abdominal mechanosensory hairs with prolonged, tonic excitation ipsilaterally, and either weak excitation or inhibition contralaterally (Figs. 4A, 6). 3. Pupae respond to tactile stimulation of mechanosensory hairs within the gin traps with a rapid closure reflex. Motor neurons which innervate muscles ipsilateral to the stimulus exhibit a large depolarization, high frequency firing, and abrupt termination (Figs. 2, 4B). Generally, contralateral motor neurons fire antiphasically to the ipsilateral motor neurons, producing a characteristic triphasic firing pattern (Figs. 7, 8) which is not seen in the larva. 4. Pupal motor neurons can also respond to sensory stimulation with other types of patterns, including rotational responses (Fig. 3A), gin trap opening reflexes (Fig. 3B), and 'flip-flop' responses (Fig. 9). 5. Pupal motor neurons, like larval motor neurons, do not show oscillatory responses to tonic current injection, nor do motor neurons of either stage appear to interact synaptically with one another. Most pupal motor neurons also exhibit i-V properties similar to those of larval motor neurons (Table 1; Fig. 10). Some pupal motor neurons, however, show a marked non-linear response to depolarizing current injection (Fig. 11).  相似文献   

8.
The embryonic motor innervation to the deep extensor abdominal muscles was studied in lobster eggs in which reflex twitches and tail flips could be evoked by mechanical stimulation in early embryos. Recordings from impaled fibers during early and later stages of embryonic development revealed spontaneous depolarizing and hyperpolarizing potentials, suggesting the presence of excitatory and inhibitory axons. Stimulation of the extensor motor innervation produced a variety of EPSPs and IPSPs. The depolarizing responses included small and large EPSPs and nonovershooting spikes. Although moderate facilitation of the EPSP was sometimes observed, defacilatation was observed in the majority of fibers of all stages. Spiking could not be evoked by motor axon stimulation in embryos of early stages. These findings indicate that from the outset the deep abdominal extensor neuromuscular system of the lobster is phasic in its response to nerve stimulation and is functional as part of the tail flip reflex at least six months before hatching.  相似文献   

9.
Summary An antiserum against the cockroach neuropeptide leucokinin I (LKI) was used to study peptidergic neurons and their innervation patterns in larvae and adults of three species of higher dipteran insects, the flies Drosophila melanogaster, Calliphora vomitoria, and Phormia terraenovae, as well as larvae of a primitive dipteran insect, the crane fly Phalacrocera replicata. In the larvae of the higher dipteran flies, the antiserum revealed three pairs of cells in the brain, three pairs of ventro-medial cells in the subesophageal ganglion, and seven pairs of ventro-lateral cells in the abdominal ganglia. Each of these 14 abdominal leucokinin-immunoreactive (LKIR) neurons innervates a single muscle of the abdominal body wall (muscle 8), which is known to degenerate shortly after adult emergence. Conventional electron microscopy demonstrates that this muscle is innervated by at least one axon containing clear vesicles and two axons containing dense-cored vesicles. Electronmicroscopical immunocytochemistry shows that the LKIR axon is one of these two axons with dense-cored vesicles and that it forms terminals on the sarcolemma of its target muscle. The abdominal LKIR neurons appear to survive metamorphosis. In the adult fly, the efferent abdominal LKIR neurons innervate the spiracles, the heart, and neurohemal regions of the abdominal wall. In the crane fly larva, dorso-medial and ventrolateral LKIR cell bodies are located in both thoracic and abdominal ganglia of the ventral nerve cord. As in the larvae of the other flies, the abdominal ventrolateral LKIR neurons form efferent axons. However, in the crane fly larva there are two pairs of efferent LKIR neurons in each of the abdominal ganglia and their peripheral targets include neurohemal regions of the dorsal transverse nerves. An additional difference is that in the crane fly, a caudal pair of LKIR axons originating from the penultimate pair of dorso-median LKIR cells in the terminal ganglion innervate the hindgut.  相似文献   

10.
The swimmerets in the abdomen of the lobster Homarus americanus are paired external appendages whose back and forth propulsive movements are brought about largely by a group of power and return stroke muscles located in the lateral abdominal cavity. We find functional innervation of these muscles by several excitatory axons and a single inhibitor in embryonic and stage 1 larval lobsters before the external appendages are even formed. This early innervation is via a few nerve bundles in which branches of the motor axons are intertwined in a complex manner. As the swimmerets develop to maturity in later larval and juvenile stages, the innervation consisting usually of several excitor and a single inhibitor synaptic terminals becomes localized to individual muscles. Patterned synaptic activity in these muscles was not seen in the embryonic and larval stages but has been shown in early juvenile stages, when it coincides with the onset of rhythmic movement of the swimmerets. Consequently, such early innervation of the swimmeret muscles may be influential in establishing the central circuitry for the generation of patterned activity, a possibility that was discounted in a previous study (Proc. Natl. Acad. Sci. USA, 70:954-958).  相似文献   

11.
The deep extensor abdominal muscle consisting of one medial and two lateral muscle bundles together with the nerve innervating the muscles of crayfish species Astacus astacus, was prepared. Light microscopic investigations of methylene blue stained preparations showed that the nerve innervating the deep extensor abdominal muscle consists of five distinct axons. The five axons were stained separately with lucifer yellow and the innervation pattern of the axons was determined. To confirm the histological results the axons were also stimulated with a suction electrode to elicit excitatory postsynaptic currents on the muscle membrane which were detected using a macro patch electrode. The muscle is innervated by a common excitatory and a common inhibitory axon branching over all three muscle bundles and sending additionally a branch to the L1-bundle of the next posterior segment, and by two axons specific for the two lateral muscle bundles. The axon specific for the innervation of the L1-bundle sends also a branch to the L1-bundle of the next posterior segment. In addition there is one excitatory axon which directly innervates the medial muscle bundle of the next posterior segment branching in most of the cases also to the medial bundle of the segment where it originates.Abbreviations DEAM deep extensor abdominal muscle - EPSC excitatory postsynaptic current - IPSC inhibitory postsynaptic current - L lateral - M medial - GABA -aminobutyric acid  相似文献   

12.
Using extracellular and intracellular stimulation, recording and dye-filling, we identified and studied the superficial extensor motor neurons of the crayfish, Cherax destructor. Functional associations of each neuron were characterised by recording its responses to sensory and abdominal cord inputs, its extensor muscle innervation pattern and its relationships with other neurons. Two clear associations were found among the six neurons of each segment. A medium-sized excitor (no. 3), that innervates a substantial percentage of extensor muscle fibres, and the largest excitor (no. 6), recruited during peak, excitation, were inhibited by input from unknown interneurons that excited the common inhibitor (no. 5). Likewise, these excitors received excitatory input when the inhibitor was silent. Another medium-sized neuron (no. 4) that innervates many muscle fibres was co-active with one of the small excitors (no. 2). The two medium-sized neurons were never active at the same time, and these two groupings may be determined by pre-motor interneurons. The implications of these findings for our understanding of motor control in this system are discussed. Accepted: 21 June 1998  相似文献   

13.
In Drosophila, the type I motor terminals innervating the larval ventral longitudinal muscle fibers 6 and 7 have been the most popular preparation for combining synaptic studies with genetics. We have further characterized the normal morphological and physiological properties of these motor terminals and the influence of muscle size on terminal morphology. Using dye-injection and physiological techniques, we show that the two axons supplying these terminals have different innervation patterns: axon 1 innervates only muscle fibers 6 and 7, whereas axon 2 innervates all of the ventral longitudinal muscle fibers. This difference in innervation pattern allows the two axons to be reliably identified. The terminals formed by axons 1 and 2 on muscle fibers 6 and 7 have the same number of branches; however, axon 2 terminals are approximately 30% longer than axon 1 terminals, resulting in a corresponding greater number of boutons for axon 2. The axon 1 boutons are approximately 30% wider than the axon 2 boutons. The excitatory postsynaptic potential (EPSP) produced by axon 1 is generally smaller than that produced by axon 2, although the size distributions show considerable overlap. Consistent with vertebrate studies, there is a correlation between muscle fiber size and terminal size. For a single axon, terminal area and length, the number of terminal branches, and the number of boutons are all correlated with muscle fiber size, but bouton size is not. During prolonged repetitive stimulation, axon 2 motor terminals show synaptic depression, whereas axon 1 EPSPs facilitate. The response to repetitive stimulation appears to be similar at all motor terminals of an axon.  相似文献   

14.
During the Drosophila life-cycle two sets of neuromuscular junctions are generated: the embryonic/larval NMJs develop during the first half, followed by the period of metamorphosis during which the adult counterpart is generated. Development of the adult innervation pattern is preceded by a withdrawal of larval NMJs, which occurs at the onset of metamorphosis, and is followed by adult-specific motor neuron outgrowth to innervate the newly developing adult fibers. Establishment of the adult innervation pattern occurs in the context of a broader restructuring of the nervous system, which results in the development of neural circuits that are necessary to carry out behaviors specific to the adult. In this article, we follow development of the dorsal longitudinal muscle (DLM) innervation pattern through metamorphosis. We find that the initial period of motor neuron elaboration is followed by a phase of extensive pruning resulting in a threefold reduction of neuromuscular contacts. This event establishes the adult pattern of second order branching. Subsequent higher order branching from the second order "contact" points generates the characteristic multiterminal innervation pattern of the DLMs. Boutons begin to appear after the pruning phase, and are much smaller than their larval counterparts. Additionally, we demonstrate that the DLM innervation is altered in the hyperexcitable double mutant, ether a go-go Shaker, and that the phenotype is suppressed by the hypoexcitable mutant, nap(ts1). Our results demonstrate that electrical activity regulates the patterning of DLM innervation during metamorphosis.  相似文献   

15.
In neonatal rabbit soleus muscle, different motor units were found to contract with widely varying time courses. Analysis of these data suggest that individual motor units are largely homogeneous for muscle fiber type despite the presence of extensive polyinnervation at birth. We suggest that (1) neonatal motor neurons are effectively differentiated into specific types insofar as they preferentially innervate muscle fibers which give rise to different contraction times, and (2) muscle fibers begin their physiological differentiation into twitch types while still polyinnervated. Possible mechanisms underlying the development of a specific pattern of neuromuscular innervation are discussed.  相似文献   

16.
During Drosophila embryogenesis, motor axons leave the central nervous system (CNS) as two separate bundles, the segmental nerve (SN) and intersegmental nerve (ISN). From these, axons separate (defasciculate) progressively in a characteristic pattern, initially as nerve branches and then as individual axons, to innervate target muscles [1] [2]. This pattern of branching resembles the outgrowth and defasciculation of motor axons from the neural tube of vertebrate embryos. The factors that trigger nerve branching are unknown. In vertebrate limbs, the branched innervation may depend on mesodermal cues, in particular on the connective tissues that organise the muscle pattern [3]. In Drosophila, the muscle pattern is organised by specific mesodermal cells, the founder myoblasts, which initiate the development of individual muscles [4][5][6]. Founder myoblasts fuse with neighbouring non-founder myoblasts and entrain these to a specific muscle programme, which also determines their innervation [4] [7]. In the absence of mesoderm, ISN and SN can form, but motor axons fail to defasciculate from these bundles [7]. The cue(s) for nerve branching therefore lie within the mesoderm, most likely in the muscles and/or in the precursor cells of the adult musculature [8]. Here, we show that founder myoblasts are the source of the cue(s) that are required to trigger defasciculation and targeted growth of motor axons. Moreover, we found that a single founder myoblast can trigger the defasciculation of an entire nerve branch. This suggests that the muscle field is structured into sets of muscles, each expressing a common defasciculation cue for a particular nerve branch.  相似文献   

17.
Anatomy of dorsal mesothoracic structures, such as muscles, sensory organs, and innervation, was studied in the silkworm, Bombyx mori L. (Lepidoptera : Bombycidae), and compared with the adult wing motor system. Musculature and nerve innervation were investigated by dissection and electron micrograph; and central projection of sensory fibers and morphology of somata and dendrites of motor neurons by cobalt back-filling, followed by silver intensification. There are 23 muscle bundles (DLM) and 2 stretch receptors (SR). The DLMs, SRs, and epidermis are innervated by a branch of the dorsal nerve trunk emerging from the mesothoracic ganglion (MSG). The branch bifurcates into a dorsal sensory branch of about 300 sensory fibers and a dorsal motor branch of 14 fibers. The sensory fibers project mainly to a longitudinal portion near the mid line in the ventral neuropil of MSG and the metathoracic ganglion. Several fibers extend into the prothoracic ganglion (PG) and a few into the subesophageal and 1st abdominal ganglia. At least 13 (probably 14) motor neurons send axons to DLMs: 9 (probably 10) in PG, and 4 in MSG. Their dendrites are located mostly on the dorsoipsilateral side of the neuropil, but several branches cross the mid line and give rise to many fine branches on the contralateral side. Comparison between the larval (present study) and adult motor system shows a significant similarity in the musculature, peripheral nerve pattern, and motor neurons with some peculiarities.  相似文献   

18.
The common inhibitor (CI) has been studied morphologically and electrophysiologically in the fifth thoracic ganglion of crayfish (Procambarus clarkii). It has a large soma and possesses two separate dendritic fields arising from distinct integrative segments.In vitro preparations display motor outputs ranging from tonic activity to fictive locomotion. The CI's tonic firing frequency increases as more excitors are recruited, and displays two peaks of frequency during fictive locomotion, one during stance, the other during swing.Paired intracellular recordings have been used to demonstrate the different central synaptic connections received or made by the CI. At least 27% of the proximal excitors receive monosynaptic connections from the CI corresponding to post-synaptic depolarizations of small amplitude mediated by GABA. However as they do not change the overall activities of the excitors which receive them, they may be used for local inhibition within the dendrites. Besides, electrical synapses between several proximal excitors and the CI may synchronize their activity.The CI receives synaptic connections arising from interneurones. Some are direct either by inhibitory monosynaptic connections or by electrical couplings whereas others arise through polysynaptic pathways. All these connections are functionally significant in the control of the CI firing activity and in its motor coordinations.  相似文献   

19.
The innervation of the biceps muscle was examined in regenerated and vitamin A-induced serially duplicated axolotl forelimbs using retrograde transport of horseradish peroxidase. The regenerated biceps muscle becomes innervated by motor neurones in the same position in the spinal cord as the normal biceps motor pool. In previous experiments in which the innervation of a second copy of a proximal limb muscle was examined in serially duplicated limbs (Stephens, Holder & Maden, 1985), the duplicate muscle was found to become innervated by motor neurones that would normally have innervated distal muscles. In the present study, the innervation of the second copy of biceps was examined under conditions designed to encourage nerve sprouting from 'correct' biceps axons. Following either partial limb denervation or denervation coupled with removal of the proximal biceps, the second copy of the muscle was still innervated by inappropriate motor neurones, which again would normally innervate distal limb muscles. These results are interpreted as evidence for the necessity for an appropriate local environment for axonal growth to allow reformation of a correct pattern of motor innervation in the regenerated limb.  相似文献   

20.
The anatomy and innervation of the lateral external muscle and sensory cells located in the ventral region of pregenital abdominal segments were examined at the larval and adult stages ofTenebrio molitor (Coleoptera). All seven muscles located in this region degenerate during the pupal stage, whilst only the lateral external median (lem) appears in the adult. Backfillings of the motor nerve innervating this muscle reveal that, at both larval and adult stages, it is innervated by ten neurons. Intracellular records from the muscle fibres show that two neurons are inhibitory, and at least five are excitatory. There are also two unpaired neurons. A variety of sensory organs are located in the ventral region of the larvae, whilst only campaniform sensilla are found in the adult. At both stages, the innervation pattern of the sensory nerve branches is very similar. Also, the central projections of the sensory cells occupy similar neuropilar areas. Finally, prolonged intracellular records from the lem muscle revealed that, at the larval stage, it participates only in segmental or intersegmental reflexes, whilst in the adult it has a primary expiratory role in ventilation. The results show that extensive changes occur in the number of muscles located in the ventral region of the pregenital abdominal segments, as well as in the arrangement and number of sensory neurons, in the structure of the exoskeleton, and even in the central nervous system. In contrast, only minor changes are observed in the sensory and motor nerve branches, in the sensory projections, and in the number and the location of the motoneurons innervating the lateral external median muscle. Correspondence to: G. Theophilidis  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号