首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intracellular dye fills have been used to reveal the pattern of embryonic growth of each of the four neurons which innervate the extensor tibiae muscle (ETi) of the hind leg of the locust. The growth cone of the slow extensor tibiae motoneuron (SETi), the first of the four neurons to leave the central nervous system, pioneers nerve 3 (N3). The fast extensor motoneuron (FETi), the next neuron to grow out, follows earlier outgrowing motoneurons into the periphery in nerve 5 (N5) and then rejoins SETi in N3. As it transfers from N5 to N3, it is transiently dye-coupled to the Tr1 pioneer neuron which spans the gap between the two nerves. It then follows SETi onto the ETi muscle in the femur. The common inhibitory neuron and the dorsal unpaired median neuron (DUMETi) follow SETi and FETi in nerves 3B2 and 5B1, respectively. SETi's growth cone requires almost twice as long to reach ETi as those of the three later motoneurons, all of which follow preexisting neural pathways. At least three of the four developing motoneurons form one or more axon branches not found in the adult. These branches may occur (1) at segmental boundaries; (2) where the nerve, which the growth cone is following, itself branches or the growth cone encounters another nerve; or (3) when the axon continues to grow beyond its target muscle. These findings contrast with the apparent absence of inappropriate axon branches in another developing locust neuromuscular system and during the innervation of zebrafish myotomes, but resemble in some ways the transient production of inappropriate axonal branches reported for embryonic leech motoneurons.  相似文献   

2.
Summary Failure of conduction of nerve impulses has been observed at the bifurcation point of the metathoracic slow extensor tibiae motor axon (SETi) ofDecticus albifrons. Records from the region proximal and distal to the bifurcation point of the axon showed that during prolonged and repetitive stimulation and after a certain number of stimuli, proportional to the stimulating frequency, some SETi action potentials failed to cross this point (Fig. 1).Cross-sections of the metathoracic extensor motor nerve ofD. albifrons show that at the region of axonal bifurcation, both the neural lamella and the layer of glial cells (the sheath) around the SETi axons became thinner than the region proximal and distal to the bifurcation (Fig. 2).The possible role of the conduction block in the neuronal control of the muscle has been discussed.Abbreviations ETi extensor tibiae - SETi slow extensor tibiae - PE proximal electrode - DE distal electrode - SE stimulating electrode  相似文献   

3.
The third pair of legs of the primitive New Zealand orthopteran insect, the " weta ", has and innervation and muscle cell distribution exactly similar to that of locusts, but wetas do not jump. Neuromuscular transmission to the slow excitatory axon ( SETi ) is potentiated more than 10-fold by the natural modulator octopamine (OCT). A brief burst of SETi impulses following infusion of as little as 10(-8) M OCT is followed by a very long-lasting plateau of catch-like tension (CT). The plateau is abruptly relaxed by a single inhibitory impulse, or even by a single SETi impulse if this arrives no sooner than about 30 sec following excitation. CT is used by wetas in a defense posture. Locusts and grasshoppers have a different type of modulation by OCT.  相似文献   

4.
The femur-tibia control system which is responsible for catalepsy is studied in the open-loop configuration (input: stimulation of the femoral chordotonal organ; output: spike-frequency of FETi and SETi as well as the force produced by the extensor tibiae muscle). Comparison of motor neuron activities and muscle force reveals the input-output relationships of the extensor tibiae muscle. This muscle behaves like a low-pass filter with a small time constant for rising inputs and a large time constant for falling inputs. It forms the decisive low-pass filter for force production of the complete system. For freely moving tibia, the elastic properties of the muscles combined with the inert mass of the tibia contribute to the low-pass filter properties. The muscle does not contribute to the high-pass filter properties of the complete system. During repetitive stimulation FETi habituates quickly.Supported by DFG Ba 578  相似文献   

5.
1. The octopamine uptake systems of the metathoracic ganglion and the extensor tibiae muscle of Locusta migratoria consists of a saturable Na+-dependent and an insaturable Na+-independent component.2. The Na+-dependent uptake component of the metathoracic ganglion consists of more than one subunits (KD of the high affinity subunit 1.7 μmol), whereas the respective component of the extensor tibiae muscle does not (KD = 60 μmol).3. Pharmacological investigations have demonstrated distinct differences in the profiles of the uptake between both tissues.4. Autoradiographic studies show that the main octopamine uptaking structures of the metathoracic ganglion are concentrated in the peripheral soma region. The extensor tibiae muscle, however, has no specialized uptake region.  相似文献   

6.
The capacity of the larval insect nervous system to compensate for the permanent loss of one of the two excitatory motoneurons innervating a leg muscle was investigated in the locust (Locusta migratoria). In the fourth instar, the fast extensor tibiae (FETi) motoneuron in the mesothoracic ganglion was permanently removed by photoinactivation with a helium-cadmium laser. Subsequently, the animals were allowed to develop into adulthood. When experimental animals were tested as adults after final ecdysis, fast-contracting fibers in the most proximal region of the corresponding extensor muscle, which are normally predominantly innervated by FETi only, uniformly responded to activity of the slow extensor tibiae (SETi) neuron. In adult operated animals, single pulses to SETi elicited large junctional responses in the fibers which resulted in twitch contractions of these fibers similar to the responses to FETi activity in control animals. The total number of muscle fibers, their properties as histochemically determined contractional types (fast and slow), and their distribution were not affected by photoinactivation of FETi. Possible mechanisms enabling the larval neuromuscular system to compensate for the loss of FETi through functionally similar innervation by a different motoneuron, i.e. SETi, are discussed.  相似文献   

7.
The known nonlinearities of the femur-tibia control loop of the stick insect Carausius morosus (enabling the system to produce catalepsy) are already present in the nonspiking interneuron E4: (1) The decay of depolarizations in interneuron E4 following slow elongation movements of the femoral chordotonal organ apodeme could be described by a single exponential function, whereas the decay following faster movements had to be characterized by a double exponential function. (2) Each of the two corresponding time constants was independent of stimulus velocity. (3) The relative contribution of each function to the total amount of depolarization changed with stimulus velocity. (4) The characteristics described in (1)–(3) were also found in the slow extensor tibiae motoneuron. (5) Single electrode voltage clamp studies on interneuron E4 indicated that no voltage dependent membrane properties were involved in the generation of the observed time course of decay. Thus, we can trace back a certain behavior (catalepsy) to the properties of an identified, nonspiking interneuron.Abbrevations FETi fast extensor tibiae motor neuron - FT-joint femur-tibia joint - FT-control loop femur-tibia control loop - SETi slow extensor tibiae motor neuron - R regression coefficient  相似文献   

8.
The bundle of tonic fibres situated at the proximal end of the locust metathoracic extensor tibialis muscle is innervated by the dorsal unpaired median neurone (DUMETi) as well as by the slow excitatory (SETi)) and common inhibitor (CI) neurones. It is not innervated by the fast excitatory neurone (FETi).These fibres contract spontaneously and rhythmically. The myogenic rhythm can be modified by neural stimulation.Spontaneous slow depolarizing potentials resembling the pacemaker potentials of insect cardiac muscle were demonstrated in these fibres.The actions of glutamate on the tonic muscle fibres are not compatible with its being a specific excitatory transmitter. Glutamate can stimulate weak contractions of the muscle, but this action is inhibited when chloride ions are removed from the saline.10?6 M Octapamine hyperpolarizes the tonic fibre membrane. Octopamine, GABA and glutamate all inhibit the myogenic contractions and reduce the force of the neurally evoked contractions.The tonic muscle is very responsive to proctolin. At 5 × 10?11 M proctolin enhances the force and increases the frequency of myogenic contractions. At 10?9 M it depolarizes the muscle membrane potential, and at that and higher concentrations it causes the muscle to contract. At 2 × 10?7 M proctolin induces contractures which resemble those evoked by sustained high-frequency neural stimulation. Iontophoretic experiments show that proctolin receptors occur at localized sites on the tonic fibre membrane.  相似文献   

9.
The effect of octopamine on the fast extensor and the flexor tibiae motor neurones in the locust (Schistocerca gregaria) metathoracic ganglion, and also on synaptic transmission from the fast extensor to the flexor motor neurones, was examined. Bath application or ionophoresis of octopamine depolarized and increased the excitability of the flexor tibiae motor neurones. 1 mM octopamine reduced the amplitude of the fast extensor-evoked EPSP in the slow but not the fast flexor motor neurones, whereas 10 mM octopamine could reduce the EPSP amplitude in both. Octopamine broadened the fast extensor action potential and reduced the amplitude of the afterhyperpolarization, the modulation requiring feedback resulting from movement of the tibia. Octopamine also increased the frequency of synaptic inputs onto the tibial motor neurones, and could cause rhythmic activity in the flexor motor neurones, and reciprocal activity in flexor and extensor motor neurones. Octopamine also increased the frequency of spontaneous spiking in the octopaminergic dorsal unpaired median neurones. Repetitive stimulation of unidentified dorsal unpaired median neurones could mimic some of the effects of octopamine. However, no synaptic connections were found between dorsal unpaired median neurones and the tibial motor neurones. The diverse effects of octopamine support its role in mediating arousal.  相似文献   

10.
Fine structure of an octopaminergic neuron and its terminals   总被引:2,自引:0,他引:2  
The large octopaminergic dorsal unpaired median neuron of the locust that innervates the extensor tibiae muscle, DUMETi, was examined electronmicroscopically. Its soma contains many Golgi complexes apparently making dense-core vesicles similar to those found in peripheral branches and terminals. There are also larger stores of the dense material in the soma, especially near the exit of the principal neurite, that are not in vesicular form. Since the neurons can be penetrated and stimulated by microelectrodes, they form favorable subjects for direct studies of the control of neurosecretion. Preterminal fine branches of the neuron were located in proximal outer bundles of muscle fibers into which they had been traced electrophysiologically. They contain numerous large dense-core vesicles arrayed in rows near microtubules. These fine branches have a thick layer of collagenous connective tissue between the axon and the muscle fiber. Final terminals have varicosities containing many vesicles, lying inside the outer layers of the sarcolemmal complex of muscle fibers. They do not form synaptic structures. Terminals of another DUM neuron, one that innervates the dorsal longitudinal flight muscles (DUMDL), were similar in detail to those of DUMETi. DUMETi swelled about 20-fold in cross-sectional area above a ligature, in a 12-hr period, indicating that there is an extensive centrifugal flow of material in it, and sprouted a branch.  相似文献   

11.
Summary Prolonged stimulation of the motor axon of the opener and stretcher muscles of the crayfish claw leads to long-term facilitation (LTF) of transmitter release at the neuromuscular junction. This facilitation is correlated with enhancement of tension development. Factors shown to enhance LTF of transmitter release, such as increased frequency of excitation, lower temperature, and exposure to ouabain also enhance tension development (Figs. 1, 2 and 4). Prolonged stimulation delivered in a bursting pattern enhances the development of tension more than an equivalent amount of stimulation delivered in a regular pattern (Fig. 3).Two circulating neurohormones, serotonin and octopamine, were examined for their effect on the development of tension during short and long periods of muscle activation. Serotonin and LTF of transmitter release appear to have an additive effect on the development of tension. The threshold for a detectable serotonin effect is 10–10 M. The effect of octopamine on the development of tension appears to be enhanced by longer periods of maintained muscle activation. LTF of transmitter release resulting from 5 min of continuous activation at 15 Hz is accompanied by a drop in the threshold of an observable octopamine effect on tension from 10–9Mto 10–10 M. It is proposed that octopamine's trophic effects on metabolism in muscle act to sustain muscular performance during maintained activity.Abbreviations LTF long term facilitation - ec Membrane potential threshold for contraction - STF short term facilitation - e.j.p. excitatory junction potential This work was supported by a N.S.E.R.C. grant to H.L.A.  相似文献   

12.
ABSTRACT. Rapid relaxation (shortening) of the femoral chordotonal organ in Cuniculina impigra Redtenbacher induces a depolarization followed by hyperpolarization of the fast and slow extensor tibiae motor neurons (FETi and SETi). The initial depolarization is caused by acceleration-sensitive units of the chordotonal organ. The reverse sequence of responses is induced in flexor motor neurons. The common inhibitor neuron (CI) is depolarized by both lengthening (stretch) and relaxation of the chordotonal organ.
The initial depolarization of FETi and SETi and the initial hyperpolarization of flexor motor neurons produced by rapid relaxation of the chordotonal organ and the depolarization of CI produced by lengthening of the chordotonal organ all oppose the resistance reflex response. However, these assisting components are weak compared to the resisting ones.  相似文献   

13.
Both octopamine and proctolin potentiate nerve-evoked skeletal muscle contractions in the horseshoe crab, Limulus. The threshold concentration for octopamine was 10?9 to 10?8M, while for proctolin it was 3 × 10?9M. Norepinephrine and dopamine produced effects similar to octopamine but at higher thresholds; tyramine and serotonin were ineffective. Octopamine caused significant increases in amplitudes of excitatory postsynaptic potentials (epsps) of muscle fibers, but had little effect on muscle fiber input resistance or membrane potential. Also, octopamine did not affect depolarization of muscle fibers and subsequent contraction due to the direct action of exogenously applied glutamate. These results suggest that octopamine potentiates nerve-evoked contractions primarily by facilitating release of neuromuscular transmitter. At concentrations above 10?7M, however, octopamine sometimes caused muscle spikes in response to motoneuron stimulation, a finding that suggests that octopamine may also have some postsynaptic action. Proctolin potentiated the muscle contractions evoked by glutamate but had little effect on glutamate-evoked muscle fiber depolarization, muscle fiber input resistance, or membrane potential. Thus, proctolin appears to act directly on skeletal muscle to enhance contractility. The proctolin-induced potentiations of contraction were sometimes accompanied by modest increases in epsp amplitude, so that unlike lobster skeletal and Limulus cardiac neuromuscular preparations, proctolin may have a secondary direct synaptic effect. Both octopamine and proctolin have been found in Limulus cardiac ganglion. This potential access to the hemolymph and the relatively low threshold concentrations needed for physiological action suggest that octopamine and proctolin could function as hormonal modulators of neuromuscular function in Limulus.  相似文献   

14.
In the crickets Gryllus bimaculatus and Gryllus campestris, the two intrinsic antennal muscles in the scape (first antennal segment) control antennal movements in the horizontal plane. Of the 17 excitatory antennal motoneurons, three motoneurons, two fast and one slow, can be stimulated selectively and their effect on muscle contraction, i.e. antennal movement, measured. Simultaneously, either a common inhibitor (CI) neuron or two DUM neurons can be stimulated and the effect on the slow and/or fast muscle contraction measured. The activity of the common inhibitor affected only slow muscle contractions. It decreased contraction rate, increased relaxation rate and suppressed prolonged muscle tension. This effect was blocked by picrotoxin. DUM neuron stimulation affected both slow and fast contractions. It reduced slow and enhanced fast contractions but in only 10% of the experiments could this effect be detected. DUM neuron activity could be mimicked by octopamine application. Proctolin application enhanced both slow and fast contractions but did not increase muscle tension in the absence of motoneuron activity. The results are discussed in relation to the large variability of possible antennal movements during behaviors.Abbreviations CI common inhibitor neuron - DUM dorsal unpaired median neuron  相似文献   

15.
Summary The sensory innervation pattern is described for the femur of the middle and the hind legs ofCarausius morosus. — In one of the nerves (F121) extracellular recordings show a unit which mirrors the tension of the flexor tibiae muscle (tension receptor). The tension receptor increases the firing rate of the slow extensor tibiae motoneuron. It measures the tension of one or more muscle fibres of the anterior side near the distal end of the muscle. The anatomical basis of this receptor is uncertain. — Another receptor was found on the ventral side of the distal end of the apodeme of the extensor tibiae muscle (apodeme receptor). Recordings from this receptor could not be obtained inCarausius. But inExtatosoma tiaratum it responded to stretching of the nerve. In the natural position it shows a minimum of excitation in the 90°-position of the femur-tibia-joint and an increase in firing rate for both flexion and extension. — Tactile hairs react phasically and have no special sensitivity for one direction. Two receptors at the dorsal side of the femur-tibia-joint (RDAL and RDPL), which are situated in the same position as inSchistocerca hind legs, react phasically to extension movements and fire tonically in the most extended position of the joint. — The influence of these receptors on the position of the femur-tibia-joint is only weak.Supported by Deutsche Forschungsgemeinschaft  相似文献   

16.
In the stick insect Carausius morosus identified nonspiking interneurons (type E4) were investigated in the mesothoracic ganglion during intraand intersegmental reflexes and during searching and walking.In the standing and in the actively moving animal interneurons of type E4 drive the excitatory extensor tibiae motoneurons, up to four excitatory protractor coxae motoneurons, and the common inhibitor 1 motoneuron (Figs. 1–4).In the standing animal a depolarization of this type of interneuron is induced by tactile stimuli to the tarsi of the ipsilateral front, middle and hind legs (Fig. 5). This response precedes and accompanies the observed activation of the affected middle leg motoneurons. The same is true when compensatory leg placement reflexes are elicited by tactile stimuli given to the tarsi of the legs (Fig. 6).During forward walking the membrane potential of interneurons of type E4 is strongly modulated in the step-cycle (Figs.8–10). The peak depolarization occurs at the transition from stance to swing. The oscillations in membrane potential are correlated with the activity profile of the extensor motoneurons and the common inhibitor 1 (Fig. 9).The described properties of interneuron type E4 in the actively behaving animal show that these interneurons are involved in the organization and coordination of the motor output of the proximal leg joints during reflex movements and during walking.Abbreviations CLP reflex, compensatory leg placement reflex - CI1 common inhibitor I motoneuron - fCO femoral chordotonal organ - FETi fast extensor tibiae motoneuron - FT femur-tibia - SETi slow extensor tibiae motoneuron  相似文献   

17.
Twenty-one prothoracic and 17 mesothoracic motor neurons innervating leg muscles have been identified physiologically and subsequently injected with dye from a microelectrode. A tract containing the primary neurites of motor neurons innervating the retractor unquis, levator and depressor tarsus, flexor tibiae, and reductor femora is described. All motor neurons studied have regions in which their dendritic branches overlap with those of other leg motor neurons. Identified, serially homologous motor neurons in the three thoracic ganglia were found to have: (1) cell bodies at similar locations and morphologically similar primary neurites (e.g., flexor tibiae motor neurons), (2) cell bodies at different locations in each ganglion and morphologically different primary neurites in each ganglion (e.g., fast retractor unguis motor neurons), or (3) cell bodies at similar locations and morphologically similar primary neurites but with a functional switch in one ganglion relative to the function of the neurons in the other two ganglia. As an example of the latter, the morphology of the metathoracic slow extensor tibiae (SETi) motor neurons was similar to that of pro- and mesothoracic fast extensor tibiae (FETi) motor neurons. Similarly the metathoracic FETi bears a striking resemblance to the pro- and the mesothoracic SETi. It is proposed that in the metathoracic ganglion the two extensor tibiae motor neurons have switched functions while retaining similar morphologies relative to the structure and function of their pro- and mesothoracic serial homologues.  相似文献   

18.
The patterns of myographic activity in the flexor and extensor tibiae muscles of the locust which accompany learned tibial extension were examined. Three distinct motor strategies were identified: (1) repeated flexion-extension movements, each of which resulted in a momentary excursion beyond the required, pre-set joint angle (demand angle) and in sum met the criterion for learning; (2) changes in basic muscle tonus, which resulted in maintained shifts in tibial position without discernible myographic activity; (3) tonic activity in the single slow excitatory motoneuron of the extensor tibiae ( SETi ) which produced maintained tibial extension. These strategies were selectively employed depending on the particular range of joint angle required. These strategies were compared and their effectiveness evaluated using a variety of behavioral criteria. Neuronal mechanisms which might underlie each of these strategies are discussed.  相似文献   

19.
Motor patterns during kicking movements in the locust   总被引:2,自引:2,他引:0  
Locusts (Schistocerca gregaria) use a distinctive motor pattern to extend the tibia of a hind leg rapidly in a kick. The necessary force is generated by an almost isometric contraction of the extensor tibiae muscle restrained by the co-contraction of the flexor tibiae (co-contraction phase) and aided by the mechanics of the femoro-tibial joint. The stored energy is delivered suddenly when the flexor muscle is inhibited. This paper analyses the activity of motor neurons to the major hind leg muscles during kicking, and relates it to tibial movements and the resultant forces.During the co-contraction phase flexor tibiae motor neurons are driven by apparently common sources of synaptic inputs to depolarized plateaus at which they spike. The two excitatory extensor motor neurons are also depolarized by similar patterns of synaptic inputs, but with the slow producing more spikes at higher frequencies than the fast. Trochanteral depressors spike at high frequency, the single levator tarsi at low frequency, and common inhibitors 2 and 3 spike sporadically. Trochanteral levators, depressor tarsi, and a retractor unguis motor neuron are hyperpolarized.Before the tibia extends all flexor motor neurons are hyperpolarized simultaneously, two common inhibitors, and the levator trochanter and depressor tarsi motor neurons are depolarized. Later, but still before the tibial movement starts, the extensor tibiae and levator tarsi motor neurons are hyperpolarized. After the movement has started, the extensor motor neurons are hyperpolarized further and the depressor trochanteris motor neurons are also hyperpolarized, indicating a contribution of both central and sensory feedback pathways.Variations in the duration of the co-contraction of almost twenty-fold, and in the number of spikes in the fast extensor tibiae motor neuron from 2–50 produce a spectrum of tibial extensions ranging from slow and weak, to rapid and powerful. Flexibility in the networks producing the motor pattern therefore results in a range of movements suited to the fluctuating requirements of the animal.  相似文献   

20.
Octopamine modulates the sensitivity of silkmoth pheromone receptor neurons   总被引:6,自引:0,他引:6  
Effects of octopamine and its antagonist epinastine on electrophysiological responses of receptor neurons of Antheraea polyphemus specialised to the pheromone components (E,Z)-6,11-hexadecadienyl acetate and (E,Z)-6,11-hexadecadienal were investigated. Injections of octopamine and epinastine into the moths had no effect on the transepithelial potential of the antennal-branch preparation nor on the spontaneous nerve impulse frequency in either type of receptor neuron. However, in the presence of continuous low-intensity pheromone stimulation, octopamine significantly increased the nerve impulse frequency in the acetate receptor neuron, but not in the aldehyde receptor neuron. Octopamine and epinastine had no significant effect on the receptor potential amplitudes elicited in both receptor neuron types by pheromone stimulation. However, the peak nerve impulse frequency in the response of both receptor neuron types to pheromone was significantly affected: decreased by epinastine and increased by octopamine over a broad range of pheromone concentrations. In control experiments, injection of physiological saline did not significantly alter the peak nerve impulse frequency. The effect of octopamine was established within 1 h after injection and persisted for about 4 h. The possibility of a direct action of octopamine on the nerve impulse generation by the receptor neurons is discussed. Accepted: 8 January 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号