首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
The differentiation of proadipocytes in vitro typically required prolonged culture of cells as a high density in high concentrations of serum and added hormones. With such culture conditions it is difficult to design experiments to determine the mechanisms that control the differentiation process. We now describe the rapid and parasynchronous growth arrest and differentiation of low density murine proadipocytes in heparinized medium containing only human plasma. When low density cells are cultured under these conditions, growth arrest at a distinct state in the G1 phase of the cell cycle occurs within 2 d and the differentiation of 80-100% of the cell population occurs within 4 d thereafter. The factors in human plasma which promote growth arrest and differentiation are heat labile and can be separated by barium adsorption. In the following paper we have used these methods to show that there are five separate phases which regulate the coupling of proadipocyte growth arrest and differentiation. The data reported in this paper establish that: (a) high cell density and extensive cell-to- cell contact are not required for adipocyte differentiation, (b) prolonged culture is not required for adipocyte differentiation, and (c) high concentrations of serum and/or added hormones are not required for adipocyte differentiation.  相似文献   

2.
Abstract. Murine mesenchymal stem cells can be induced to arrest their growth at a series of growth and differentiation states in the G1 phase of the cell cycle. These include the predifferentiation arrest state (GD) at which the integrated control of proliferation and differentiation is mediated, the growth factor/serum deficiency arrest state (GS), and the nutrient deficiency arrest state (GN). Cells at states of reversible nonterminal differentiation (GD?) and irreversible terminal differentiation (TD) can also be isolated. In this paper we have employed 1- and 2-dimensional (D) gel electrophoresis to evaluate changes in specific proteins that occur during the various growth and differentiation states of 3T3 T mesenchymal stem cells. The protein composition of membrane, microsome and cytosol preparations of cells arrested at GD, GS and GN states was determined by 2-D gel electrophoresis. More than 50 distinct polypeptides could be identified for each arrest state in gels analysed by a silver staining procedure or by autoradiography following [35S]-methionine labelling. A second series of studies established that a more limited number of differences could be identified if phosphoproteins were analysed by 1-D gel electrophoresis in cells at the GS, GD, GD?. and TD states. These results established that one distinct 37 kD phosphoprotein is present in all growth arrested cells and that two distinct differentiation-associated phosphoproteins with molecular weights of 29 kD and 72 kD are present in cells at the GD? and TD states. Thus, the composition of proteins and phosphoproteins in mesenchymal stem cells serves to characterize different states of growth arrest and differentiation. The identification of differential protein expression provides an opportunity to test their functional role in growth and differentiation control.  相似文献   

3.
Regulation of the transition of mouse myoblasts from proliferation to terminal differentiation was studied with clonal density cultures of a permanent clonal myoblast cell line. In medium lacking mitogenic activity, mouse myoblasts withdraw from the cell cycle, elaborate muscle-specific gene products, and fuse to form multinucleated myotubes. Addition of a purified mitogen, fibroblast growth factor, to mitogen-depleted medium stimulates continued proliferation and prevents terminal differentiation. When mitogens are removed for increasing durations and then refed, mouse myoblasts irreversibly commit to terminal differentiation: after 2–4 h in the absence of mitogens, myoblasts withdraw from the cell cycle, elaborate muscle-specific gene products, and fuse in the presence of mitogens that have been fed back. Population kinetics of commitment determined with 3H-thymidine labeling and autoradiography suggest the following cell-cycle model for mouse myoblast commitment: (1) if mitogens are present in the extracellular environment of myoblasts in G1 of the cell cycle, the cells enter S and continue through another cell cycle; (2) if mitogens have been absent for 2 or more hours, cells in G1 do not enter S; the cells commit to differentiate, permanently withdraw from the cell cycle (will not enter S if mitogens are refed), and they subsequently elaborate acetylcholine receptors and fuse (even if mitogens are refed); (3) cells in other phases of the cell cycle continue to transit the cell cycle in the absence of mitogens until reaching the next G1. The commitment kinetics and experiments with mitotically synchronized cells suggest that the commitment “decision” is made during G1. Present results do not, however, exclude commitment of some cells in other phases of the cell cycle.  相似文献   

4.
Experimental evidence is presented that supports a cell cycle model showing that there are five distinct biological processes involved in proadipocyte differentiation. These include: (a) growth arrest at a distinct state in the G1 phase of the cell cycle; (b) nonterminal differentiation; (c) terminal differentiation; (d) loss of the differentiated phenotype; and (e) reinitiation of cell proliferation. Each of these events is shown to be regulated by specific human plasma components or other physiological factors. At two states designated GD and GD', coupling of growth arrest and differentiation is shown to occur. We propose that these mechanisms for the coupling of growth arrest and differentiation are physiologically significant and mimic the regulatory processes that control stem cell proliferation in vivo.  相似文献   

5.
Embryonic stem cells (ESCs) possess two unique characteristics: self‐renewal and pluripotency. In this study, roles of voltage‐gated potassium channels (Kv) in maintaining mouse (m) ESC characteristics were investigated. Tetraethylammonium (TEA+), a Kv blocker, attenuated cell proliferation in a concentration‐dependent manner. Possible reasons for this attenuation, including cytotoxicity, cell cycle arrest and differentiation, were examined. Blocking Kv did not change the viability of mESCs. Interestingly, Kv inhibition increased the proportion of cells in G0/G1 phase and decreased that in S phase. This change in cell cycle distribution can be attributed to cell cycle arrest or differentiation. Loss of pluripotency as determined at both molecular and functional levels was detected in mESCs with Kv blockade, indicating that Kv inhibition in undifferentiated mESCs directs cells to differentiate instead of to self‐renew and progress through the cell cycle. Membrane potential measurement revealed that Kv blockade led to depolarization, consistent with the role of Kv as the key determinant of membrane potential. The present results suggest that membrane potential changes may act as a “switch” for ESCs to decide whether to proliferate or to differentiate: hyperpolarization at G1 phase would favor ESCs to enter S phase while depolarization would favor ESCs to differentiate. Consistent with this notion, S‐phase‐synchronized mESCs were found to be more hyperpolarized than G0/G1‐phase‐synchronized mESCs. Moreover, when mESCs differentiated, the differentiation derivatives depolarized at the initial stage of differentiation. This investigation is the first study to provide evidence that Kv and membrane potential affect the fate determination of ESCs. J. Cell. Physiol. 224:165–177, 2010 © 2010 Wiley‐Liss, Inc.  相似文献   

6.
Myoblasts of the L6 rat cell line were grown in Ham's F12 nutrient medium containing 10% fetal calf serum (F12 + FCS). Although the cells were confluent by 6 days in culture, fusion was not observed even if cultures were maintained for 10–14 days. At least 80% of the cells in such confluent unfused cultures were in the G1 phase of the cell cycle and less than 5% of the cells in confluent cultures synthesized DNA during a 4-day period. The synthesis of muscle-specific proteins (α-actin, β-tropomyosin, and myosin light chains LC1emb and LC2F) was negligible when compared to fused cultures of L6 cells grown for a similar time in Dulbecco's medium with 10% FCS (DME + FCS). When the unfused cultures were shifted from F12 + FCS to DME + FCS, DNA synthesis could be demonstrated in more than 95% of the cells and fusion occurred, indicating that neither proliferative nor myogenic capacity had been irreversibly lost. Raising the levels of calcium, varying the serum concentration from 0 to 20%, or the addition of medium components (present in DME but reduced or absent in F12) all failed to induce fusion in the L6 cells grown in F12. However, L6 cells will fuse in mixtures of F12 + FCS and DME + FCS. Fusion will also occur if L6 cells are grown at clonal density in F12 + FCS supplemented with calcium. While it has not been possible to determine why F12 + FCS is nonpermissive for L6 cells in confluent mass cultures, the results demonstrate that prolonged residence in the G1 phase of the cell cycle is not a sufficient condition for L6 myoblast differentiation to occur.  相似文献   

7.
Bernardo Nadal-Ginard 《Cell》1978,15(3):855-864
L6E9 rat myoblasts derived from the L6 cell line can be induced to differentiate to a very high percentage by manipulating the culture conditions. Under standard differentiating conditions, L6E9 cells divide an average of 2.5 times before differentiating and >99% of them incorporate 3H-TdR before fusing. By inhibiting DNA replication by a variety of means, data have been obtained which demonstrate that this DNa synthesis is not required to switch from growth to differentiation. After every cell division, L6E9 cells have the option either to fuse or to proliferate without intervening DNA synthesis.Cell cloning and DNA labeling experiments show a direct correlation between the time of culture in differentiating medium and a progressive loss of proliferative capacity of mononucleated L6E9 cells, demonstrating that these cells become irreversibly committed to differentiation and withdraw from the cell cycle prior to and not as a consequence of cell fusion. The commitment step occurs during the G1 phase prior to fusion. This G1 phase has a latent period during which no irreversible step toward differentiation occurs and the cells remain ambivalent toward growth or differentiation. Under proper conditions, this period is followed by an irreversible commitment toward differentiation and a loss of proliferative capacity. The kinetics of this commitment step strongly suggest that L6E9 cells become irreversibly committed in a stochastic manner. Once the cells have become committed, with or without DNA synthesis, they will fuse to form myotubes and biochemically differentiate in a deterministic fashion.The data presented are consistent with a stochastic model of differentiation for L6E9 cells and demonstrate that the switch from a proliferating to a differentiating genetic program can occur in the absence of DNA synthesis.  相似文献   

8.
The transformation from the asexual proliferative stage of Tetrahymena to the sexual stage, during which cells of complementary mating types pair and nuclear fertilization occurs, provides an opportunity to study the relationship between the division cycle and differentiation. Conjugation is induced in cells starved for at least 2 hr by mixing complementary mating types. To determine the effect of starvation on the cell cycle, dividing cells were selected from a log growth culture and stepped down to non-nutrient conditions. The G1 stage is operationally divisible into two sectors, A and B. In the A stage, cells arrest in nutrient-free medium. In the B stage, they proceed through the division cycle. Arrested G1A cells may conjugate directly when challenged with similar cells of a complementary mating type. It is thereby demonstrated that Tetrahymena cells in G1A can be directed to divide (nutrient conditions) or can be directed to differentiate (non-nutrient conditions plus complementary mating type) without an intervening division cycle. This rules out a requirement for reprogramming via chromosomal replication or cell division and suggests that G1A is a stage during which the division/differentiation decision is made in direct response to ambient conditions.  相似文献   

9.
We investigated the effect of cell adhesion on cellgrowth and productivity of recombinant protein inChinese hamster ovary (CHO) cells. Cells cultured innormal tissue culture dishes attached to the dishsurfaces and grew as a monolayer, while cells culturedin non-treated dishes proliferated in suspension assingle cells without adhering to the dish surfaces. On an agarose-coated dish surface, cell aggregatesformed without attaching to the dish. Growth rates inboth suspension cultures were slightly lower thanthose in monolayer culture. Cell cycle analysisindicated that the duration of the G1 phase insuspension cultures was longer than that in monolayerculture, suggesting that attachment to the substratummainly affected the transition from the G1 to theS phase. Consistent with this, CDK inhibitor p27,that inhibits the G1S transition, was induced inthe cells cultured in suspension.To assess the productivity of recombinant proteins,CHO cells were transfected with a plasmid containingmurine interferon (mIFN-) under thecontrol of the cytomegalovirus promoter. Insuspension culture, mIFN- productivity wasslightly lower than that in the monolayer culture. When protein kinase C was activated by phorbol ester,mIFN- production was enhanced in both themonolayer and suspension cultures. However, theproductivity in the suspension culture was lower thanthat in the adherent culture even in the presence ofhigh concentrations of phorbol ester. These resultssuggested that cell adhesion to the substratum affectsvarious features of CHO cells.  相似文献   

10.
11.
There is a strong evidence that administration of antitumor drugs triggers apoptotic death of target cells. A characteristic feature of appotosis is active participation of the affected cell in its demise. Attempts have been made, therefore, to potentiate the cytotoxicity of a variety of agents by modulating the propensity of cells to respond by apoptosis. Several strategies to enhance apoptosis that involve modulation of the cell cycle or differentiation are discussed. Loss of control of the G1 checkpoint in tumor cells allows one to design treatments that arrest normal cells at the checkpoint and attempt to selectively kill tumor cells with S phase specific drugs. The possibility of a restoration of the apoptosis triggering function of the tumor suppressor gene p53 when the G1 checkpoint function is abolished is expected to increase tumor cells' sensitivity to S phase poisons. Because induction of apoptosis by many antitumor drugs is cell cycle phase specific, drug combinations that preferentially trigger apoptosis at different phases of the cycle, or recruitment of cells to the sensitive phase, offer another antitumor strategy. There is also evidence that apoptosis is potentiated when cell differentiation is triggered follwing DNA damage. This observation suggests that strategies which combine DNA damaging and differentiating drugs, under conditions where the latter are administered following DNA damage caused by the former, may be successful.  相似文献   

12.
Background information. Primordial germ cells in developing male and female gonads are responsive to somatic cell cues that direct their sex‐specific differentiation into functional gametes. The first divergence of the male and female pathways is a change in cell cycle state observed from 12.5 dpc (days post coitum) in mice. At this time XY and XX germ cells cease mitotic division and enter G1/G0 arrest and meiosis prophase I respectively. Aberrant cell cycle regulation at this time can lead to disrupted ovarian development, germ cell apoptosis, reduced fertility and/or the formation of germ cell tumours. Results. In order to unravel the mechanisms utilized by germ cells to achieve and maintain the correct cell cycle states, we analysed the expression of a large number of cell cycle genes in purified germ cells across the crucial time of sex differentiation. Our results revealed common signalling for both XX and XY germ cell survival involving calcium signalling. A robust mechanism for apoptosis and checkpoint control was observed in XY germ cells, characterized by p53 and Atm (ataxia telangiectasia mutated) expression. Additionally, a member of the retinoblastoma family and p21 were identified, linking these factors to XY germ cell G1/G0 arrest. Lastly, in XX germ cells we observed a down‐regulation of genes involved in both G1‐ and G2‐phases of the cell cycle consistent with their entry into meiosis. Conclusion. The present study has provided a detailed analysis of cell cycle gene expression during fetal germ cell development and identified candidate factors warranting further investigation in order to understand cases of aberrant cell cycle control in these specialized cells.  相似文献   

13.
The 90-kDa heat shock proteins (HSP90) are important in the regulation of numerous intracellular processes in eukaryotic cells. In particular, HSP90 has been shown to be involved in the control of the cellular differentiation of the protozoan parasite Leishmania donovani. We investigated the role of HSP90 in the related parasite Trypanosoma cruzi by inhibiting its function using geldanamycin (GA). GA induced a dose-dependent increase in heat shock protein levels and a dose-dependent arrest of proliferation. Epimastigotes were arrested in G1 phase of the cell cycle, but no stage differentiation occurred. Blood form trypomastigotes showed conversion towards spheromastigote-like forms when they were cultivated with GA, but differentiation into epimastigotes was permanently blocked. We conclude that, similar to leishmanial HSP90, functional HSP90 is essential for cell division in T. cruzi and serves as a feedback inhibitor in the cellular stress response. In contrast to L. donovani cells, however, T. cruzi cells treated with GA do not begin to differentiate into relevant life cycle stages.  相似文献   

14.
Human embryonic stem (hES) cells provide a promising supply of specific cell types for transplantation therapy. We presented here the method to induce differentiation of purified neural precursors from hES cells. hES cells (Line PKU-1 and Line PKU-2) were cultured in suspension in bacteriological Petri dishes, which differentiated into cystic embryoid bodies (EBs). The EBs were then cultured in N2 medium containing bFGF in poly-L-lysine-coated tissue culture dishes for two weeks. The central, small cells with 2–3 short processes of the spreading outgrowth were isolated mechanically and replated. The resulting neurospheres were cultured in suspension for 10 days, then dissociated into single cell suspension with a Pasteur pipette and plated. Cells grew vigorously in an attached way and were passed every 4–5 days. Almost all the cells were proved nestin positive by immunostaining. Following withdrawal of bFGF, they differentiated into neurons expressing β-tubulin isotypeIII, GABA, serotonin and synaptophysin. Through induction of PDGF-AA, they differentiated into astrocytes expressing GFAP and oligodendrocytes expressing O4. The results showed that hES cells can differentiate into typical neural precursors expressing the specific marker nestin and capable of generating all three cell types of the central nervous system (CNS)in vitro.  相似文献   

15.
Abstract The Dictyostelium vegetative cell cycle is characterized by a short mitotic period followed immediately by a short S-phase (less than 30 min) and a long and variable G2 phase. The cell cycle continues during differentiation despite a decrease in cell mass: DNA replication and mitosis occur early in development and also at the tipped aggregate stage. Cells that are in mitosis, S-phase or early G2, when starved differentiate into prestalk cells and cells that are in the middle of G2 differentiate into prespore cells. We postulate that there is a restriction point late in the G2 phase, about 1–2 h before mitosis, where the cells can be arrested either by starvation and the initiation of development, by growing into stationary phase, or by prolonged incubation at low temperature. During development, this block persists to the tipped aggregate stage, where it is specifically released in prespore cells, and these cells then go through one more round of cell division. Genes encoding components of the cell cycle machinery have recently been isolated and attemps to specifically block the cell cycle by reverse genetics to study the effects on differentiation have been initiated.  相似文献   

16.
Although the majority of mammalian cells in situ are terminally differentiated, most DNA repair studies have used proliferating cells. In an attempt to understand better the relationship between differentiation and DNA repair, we have used the murine 3T3-T proadipocyte cell line. In this model system, proliferating (stem) cells undergo growth arrest (GD cells) and subsequently terminally differentiate into adipocytes when exposed to media containing platelet-depleted human plasma. Pulsed-field gel electrophoresis was used to evaluate the induction and repair of DNA double-strand breaks (DSBs) after ionizing radiation. The levels of radiation-induced DSBs in GD and terminally differentiated cells were similar, but in both cases greater than those found in stem cells at each radiation dose tested (0 to 40 Gy); these differences appear to be due to growth arrest in G1 phase. DNA DSBs were repaired with biphasic kinetics for each cell type. For terminally differentiated cells 25% of DNA DSBs remained unrejoined compared with < 10% for GD and stem cells after a repair time of 4 h. These data indicate that terminal differentiation of 3T3-T cells is associated with a reduction in the repair of ionizing radiation-induced DNA DSBs.  相似文献   

17.
In many cases, the process of cancer cell differentiation is associated with the programmed cell death. In the present study, interestingly, we found that eupatilin, one of the pharmacologically active ingredients of Artemisia asiatica that has been reported to induce apoptosis in human gastric cancer AGS cells, also triggers differentiation of these cells. Treatment of AGS cells with eupatilin induced cell cycle arrest at the G1 phase with the concomitant induction of p21cip1, a cell cycle inhibitor. This led us to test whether eupatilin may trigger AGS cells to differentiate into the matured phenotypes of epithelial cells and this phenomenon may be coupled to the apoptosis. Eupatilin induced changes of AGS cells to a more flattened morphology with increased cell size, granularity, and mitochondrial mass. It also markedly induced trefoil factor 1 (TFF1), a gene responsible for the gastrointestinal cell differentiation. Eupatilin dramatically induced redistribution of tight junction proteins such as occludin and ZO-1, and F-actin at the junctional region between cells. It also induced phosphorylation of extracellular signal-regulated kinase 2 and p38 kinase. Blockade of ERK signaling by PD098059 or the dominant-negative ERK2 significantly reduced eupatilin-induced TFF1 and p21 expression as well as ZO-1 redistribution, indicating that ERK cascades may mediate eupatilin-induced AGS cell differentiation. Collectively, our results suggest that eupatilin acts as a novel anti-tumor agent by inducing differentiation of gastrointestinal cancer cells rather than its direct role in inducing apoptotic cell death.  相似文献   

18.
The arrest of C1300 neuroblastoma cells by limiting serum or isoleucine in the growth medium is described. The resumption of DNA synthesis after the return of the cells to complete medium indicates that they stop in the early G1 (or G0) phase of the cell cycle with both arrest procedures. However, the isoleucine limitation procedure also arrests about half of the cells in the G2 phase of the cell cycle. This result is used to modify a recent model for growth control of transformed cells.  相似文献   

19.
Most cell lines that lack functional p53 protein are arrested in the G2 phase of the cell cycle due to DNA damage. It was previously found that the human promyelocyte leukemia cells HL-60 (TP53 negative) that had been exposed to ionizing radiation at doses up to 10 Gy were arrested in the G2 phase for a period of 24 h. The radioresistance of HL-60 cells that were exposed to low dose-rate gamma irradiation of 3.9 mGy/min, which resulted in a pronounced accumulation of the cells in the G2 phase during the exposure period, increased compared with the radioresistance of cells that were exposed to a high dose-rate gamma irradiation of 0.6 Gy/min. The D0 value (i.e. the radiation dose leading to 37% cell survival) for low dose-rate radiation was 3.7 Gy and for high dose-rate radiation 2.2 Gy. In this study, prevention of G2 phase arrest by caffeine (2 mM) and irradiation of cells with low dose-rate irradiation in all phases of the cell cycle proved to cause radiosensitization (D0=2.2 Gy). The irradiation in the presence of caffeine resulted in a second wave of apoptosis on days 5–7post-irradiation. Caffeine-induced apoptosis occurring later than day 7 post-irradiation is postulated to be a result of unscheduled DNA replication and cell cycle progress.  相似文献   

20.
We studied intracellular activity of the plasminogen activator within the cell cycle of chemically synchronized normal and RSV-transformed chick fibrolasts in culture. Consideration has also been given to the relationship between the plasminogen activator activity and cycles of DNA synthesis or mitosis in cycling fibroblasts after viral infection. The plasminogen activator activity of the cell lysates was assayed on [125I]fibrin-coated Petri dishes and was expressed as the radioactivity released from the plates. Normal fibroblasts produced detectable levels of plasminogen activator in the S-phase and late G2-phase or mitosis of the cell cycle. In contrast, RSV-transformed cells produced high levels of this activator throughout the entire cell cycle although this activity fluctuated and reached a maximum in the G2-M periods. We also found that the level of plasminogen activator activity in the transformed fibroblasts is influenced by the cycles of DNA synthesis and that cell division is required for the appearance of plasminogen activator activity in the ‘de novo’ virus-infected cultures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号