首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
利用光学和电子显微镜对采自黄海水域的1个管壳缝类硅藻——非洲南氏藻进行了形态学研究,并对其地理分布进行了讨论.结果表明:(1)该种壳体带面呈矩形,壳面窄椭圆形,具有钝圆的末端.(2)壳缝居中,由两条等长的分支组成.(3)管壳缝由复杂、接合的肋突支撑,但无龙骨.(4)每条线纹仅有1个孔纹,壳套上最多有1列孔纹.(5)目前...  相似文献   

2.
Frustules of a clonal culture of Melosira roeseana Rabenh. were examined with light and scanning electron microscopy. Vegetative valves in the post-auxospore (full size) stage exhibit a larger width/length ratio than those in the pre-auxospore (size-reduced) stage. Cells form chains by linking spines of adjacent valves which occur at the periphery of the valve face-mantle junction. Three or jour large pores occur at the center of the valve face, with the diameter of each pore tapering from the inner to the outer valve surface; these pores are often occluded by siliceous processes. Features of M. roeseana, not shown previously for Melosira, include a “stepped” mantle, on only one of the two valves resulting from the same cell division, flattened processes attached to short siliceous stalks on the valve face, disk-like processes on the mantle, and an open girdle band with up to eight antiligulae. Siliceous scales on the surface of the initial cell are remnants of the auxospore wall. The epivalve of the initial cell is larger in diameter than the hypovalve, and both valves lack linking spines and a step on the valve surface. The initial, cell epicingulum consists of only two bands; the hypocingulum has up to seven. Initial cells with four or more hypocingular bands divide to form new post-auxospore filaments. Melosira roeseana should not be included in the genus Melosira as it is presently defined by the type species, M. nurnmuloides C. Ag. Major differences include irregular linking spines, a closed pseudoloculate valve construction, and labiate processes on the valve face and mantle of M. nummuloides, compared with well-defined linking spines, a valve constructed of a basal siliceous layer perforated by poroid areolae, and labiate processes lacking on the valve of M. roeseana.  相似文献   

3.
The envelope and stalk of Colacium mucronatum Bourr. & Chad, were examined in living cells with light microscopy and in fixed preparations with scanning electron microscopy using critically point dried (CPD) and freeze dried (FD) preparations. The envelope of palmelloid cells is formed over the entire cell surface by many individual strands attached at right angles to areas of articulation of the pellicular strips. Strands were observed to anastomose on the posterior tip of otherwise naked cells. Stalks of living cells in India ink preparations had an optically dark inner core with a lighter outer sheath. In FD stalks a definite inner core was not evident, whereas CPD stalks had an outer surface composed of thick strands which may be the collapsed and aggregated strands of the FD stalks. In both there was also an amorphous matrix. The stalk forms from the aggregation of many strands from the anterior cell tip back to a point encompassing the cell surface anterior to a cross section of the tip 9 μm diam. The outer surface of the stalk comes from the pellicular surface joining that area and the core from the cell tip in the area of the canal opening. Any possible participation of the inner canal surface in stalk formation could not be determined because of the great density of the mucilage at the cell-tip/stalk junction.  相似文献   

4.
Navicula mutica (Kütz.) var. mutica was isolated from the air, cloned on agar, cultured in soil-water bottle, and studied with transmission and scanning electron micros-ropy. The frustules were lanceolate to ovoid with rounded apices, with the apical axis 8.5 ± 3.2 μ and the trans-apical and the transapical axis 3.6 ± 0.6 μm. Striae were composed of two or three puncta, and the mantle bore a single row of puncta aligned with the striae. The ends of the raphe turned away from an isolated punctual in the central area of the valve. The mantle puncta and one or two of the valve-face puncta in each stria opened into a series of transapical grooves in the interior of the valve, the grooves contributing to the appearance of striae in the light microscope. The interior of the mantle also possessed a pair of longitudinal grooves, discontinuous at the apices of the valves. An undulate advalvar margin of the valvocopula likely articulates along the interior longitudinal groove of the mantle. The projections of the undulate margin are perhaps positioned between the transapical grooves and along the longitudinal groove between the dentiform structures formed by the intersection of the double-grooved system. The girdle bands each had two (occasionally three) rows of pores. The pleurae margins were straight and not undulate.  相似文献   

5.
Live and prepared cells of the marine pennate diatom Navicula complanatoides Hust. were examined with light and electron microscopy. It has narrowly lanceolate valves (26–55 μm long, 4–5 μm wide) and girdles 10–24 μm in depth. Striae are parallel at the center of the valve (24–28 in 10 μm), becoming slightly convergent toward the apices. Electron microscopy revealed that the external valve surface presents a longitudinally ribbed appearance (20–28 parallel ribs at its maximum width), whereas internally, rectangular areolae are occluded by ricae. The raphe slit lies in a narrow axial area, and one side of the raphe sternum is deeper and folds over the other, obscuring the internal opening. Internally, the central virga on one side of the raphe and two virgae on the other are somewhat broader. A conspicuous pore (stigma) is present between the two broadened virgae. The girdle consists of valvocopulae, copulae, and pleurae. There are 16–20 bands per cingulum. The valvocopulae and copulae are hollow tube-like structures, with inner and outer portions contrsting in morphology. They decrease in diameter in an abvalvar direction. There are four pleurae. These are flat bands which facilitate overlap of the epicingulum and hypocingulum. Fundamental features of the valve and girdle reveal the distinctness of this species within Navicula. The areolae, external longitudinal ribs, and raphe structure suggest affinities with Pleurosigma, Gyrosigma, and Haslea. It is hypothesized that they share a derived state which indicates a recent common ancestor for these taxa. N. complanatoides and related species of the Naviculae microstigmatacae are distinctive enough to merit their own genus within the Naviculaceae.  相似文献   

6.
The cell wall (frustule) of the freshwater diatom Pinnularia viridis (Nitzsch) Ehrenberg is composed of an assembly of highly silicified components and associated organic layers. We used atomic force microscopy (AFM) to investigate the nanostructure and relationship between the outermost surface organics and the siliceous frustule components of live diatoms under natural hydrated conditions. Contact mode AFM imaging revealed that the walls were coated in a thick mucilaginous material that was interrupted only in the vicinity of the raphe fissure. Analysis of this mucilage by force mode AFM demonstrated it to be a nonadhesive, soft, and compressible material. Application of greater force to the sample during repeated scanning enabled the mucilage to be swept from the hard underlying siliceous components and piled into columns on either side of the scan area by the scanning action of the tip. The mucilage columns remained intact for several hours without dissolving or settling back onto the cleaned valve surface, thereby revealing a cohesiveness that suggested a degree of cross-linking. The hard silicified surfaces of the diatom frustule appeared to be relatively smooth when living cells were imaged by AFM or when field-emission SEM was used to image chemically cleaned walls. AFM analysis of P. viridis frustules cleaved in cross-section revealed the nanostructure of the valve silica to be composed of a conglomerate of packed silica spheres that were 44.8 ± 0.7 nm in diameter. The silica spheres that comprised the girdle band biosilica were 40.3 ± 0.8 nm in diameter. Analysis of another heavily silicified diatom, Hantzschia amphioxys (Ehrenberg) Grunow, showed that the valve biosilica was composed of packed silica spheres that were 37.1 ± 1.4 nm and that silica particles from the girdle bands were 38.1 ± 0.5 nm. These results showed little variation in the size range of the silica particles within a particular frustule component (valve or girdle band), but there may be differences in particle size between these components within a diatom frustule and significant differences are found between species.  相似文献   

7.
The valves and girdle bands of Melosira varians C. A. Agardh have been shown to possess greater detail than had been supposed from light microscopy. Spines, pores and projections on the surface of the loculate valve are described, and the precise relationships of the girdle bands to each other and to the valves have been elucidated.  相似文献   

8.
Diatoms stand out among other microalgae due to the high diversity of species-specific silica frustules whose components (valves and girdle bands) are formed within the cell in special organelles called silica deposition vesicles (SDVs). Research on cell structure and morphogenesis of frustule elements in diatoms of different taxonomic groups has been carried out since the 1950s but is still relevant today. Here, cytological features and valve morphogenesis in the freshwater raphid pennate diatom Encyonema ventricosum (Agardh) Grunow have been studied using light and transmission electron microscopy of cleaned frustules and ultrathin sections of cells, and scanning electron and atomic force microscopy of the frustule surface. Data have been obtained on chloroplast structure: the pyrenoid is spherical, penetrated by a lamella (a stack of two thylakoids); the girdle lamella consists of several short lamellae. The basic stages of frustule morphogenesis characteristic of raphid pennate diatoms have been traced, with the presence of cytoskeletal elements near SDVs being observed throughout this process. Degradation of the plasmalemma and silicalemma is shown to take place when the newly formed valve is released into the space between sister cells. The role of vesicular transport and exocytosis in the gliding of pennate diatoms is discussed.  相似文献   

9.
Critical-point dried (CPD) cells from clonal cultures of Euglena gracilis Klebs (Z strain), E. deses Ehrb., E. tripteris (Duj.) Klebs and E. myxocylindracea Bold & MacEntee were examined by scanning electron microscopy. Flagellated motile cells of E. gracilis are naked except for a few strands of mucilage on the posterior tip. Flagellated cells of E. tripteris have a permanent mucilage coating often of uneven distribution and usually not as well developed as that of nonflagellated creeping cells which have a distinctive mucilage. In E. deses the coating appears rough due to the aggregation of isolated groups of strands above the cell surface. In E. tripteris the coating appears smooth except for breaks near the articulation of the pellicular strips where the mucilage may rise above the surface to form waves. At high magnification this mucilage consists of a network of strands generally lying parallel to the cell surface; the strands become obscure in some specimens. In E. myxocylindracea elongated, mucilage-coated cells contract to form spheres which undergo further mucilage deposition producing the mucilage covering of palmellae. As palmellae mature, the mucilage surface becomes less porous and the individuality of most mucilage strands is lost.  相似文献   

10.
Chemically cleaned and critical-point dried cells of a clonal culture were examined with scanning electron microscopy. Cells form filaments by valve-to-valve connections maintained by organic material which adheres to the central area of the valve face. Bending of filaments is probably restricted to some extent by the articulation of overlapping spatulate marginal spines with an adjacent underlapping set of much shorter spines (ridges), and with the mantle edge itself. Cell division results in three possible spine patterns for each cell: a set of overlapping and a set of underlapping spines; no overlapping sets of spines (two underlapping); or two sets of overlapping spines (no underlapping). Each filament inherits cells with spine set patterns in the ratio of 2 (with 1 set overlapping): 1 (with no sets overlapping): 1 (with 2 sets overlapping). Valvocopulae are shaped similarly to pleurae except that the partes exteriores of the valvocopulae are wider. The pars interior of both is delimited by an advalvar row of pores continuous around the cell apex. The pars exterior also has a row of pores, but it is median in the valvocopula and first pleura and does not continue around the cell apex. The valvocopulae always underlap the mantle and the pleurae always underlap their preceding band. The ends of both appeared attached, but may become free in acid-cleaned preparations. Bands alternate with each other so that the ends of the valvocopula attach to the first continuous apical portion of the first pleura; the ends of the first pleura attach in that same fashion to the second pleura but at the opposite apex; and all subsequent pleurae alternate in the same fashion with up to at least 13 pleurae/epicingulum. The continuous apical portion of each band is elevated so that a functional (but not structural) ligula is formed, with the continuous apical portion of alternate bands becoming adjacent and underlapping each other only in this region. The valvocopulae in a single cell, or of adjacent cells, may have their continuous apical ends on the same or on opposite apices. It is recommended that N. confervacea var. peregrina (W. Sm.) Grun. be merged with the nominate variety.  相似文献   

11.
The relationship of cell organelles to valve morphogenesis was investigated in three species of Nitzschia. One, N. sigmoidea (Nitzsch) W. Sm., showed consistent ability to generate both nitzschioid and hantzschioid symmetry in daughter cells following cytokinesis; the other two maintained nitzschioid symmetry stably. From previous work with Hantzschia, a certain sequence of events could be anticipated in the cytoplasm. In two significant areas–the behavior of the Microtubule Center (MC) and its microtubule (MT) system, and the central origin of the silicalemma–not only were the results unexpected, but the three species showed fundamental differences among themselves. In N. sigmoidea, the silicalemma (and the future raphe region) arises centrally on the cleavage furrow, and after some lateral expansion, the silicalemmas and their associated organelles move in opposite directions in daughter cells, so that the raphe and the raphe canals end up along the girdle side of the cell as expected. However, the MCs never become associated with their silicalemma, remaining throughout near the girdle bands. In N. sigma (Kütz) W. Sm., the silicalemmas arise centrally and after lateral growth, move in opposite directions to generate nitzschioid symmetry. In this case, the MCs move to the vicinity of but never close to the silicalemmas, and follow them distantly during their lateral movement. In N. tryblionella Hantzsch, the new silicalemmas arise opposite one another, on one side of the daughter cells; each MC soon moves very close to its silicalemma, and remains thus through most of valve morphogenesis. Later, only one silicalemma/MC complex moves laterally, establishing the nitzschioid symmetry in both daughter cells. In all three species, as in Hantzschia, linear arrays of mitochondria aligned along MTs occupy the forming raphe canal, and microfilaments line the outer edge of the expanding silicalemma. The fibulae (the wall struts arching across the raphe canal) in Hantzschia always grow from the valve surface to the girdle surface of the forming valves. In these three Nitzschiae, this invariably happens in only one daughter cell of any pair; in the other, all the fibulae grow from the girdle surface to the valve surface. An explanation of these variations is proposed: that the morphogenetic machinery of Nitzschia and Hantzschia have a common origin, with present Nitzschiae having undergone considerable diversification at the intracellular level, causing the unstable cell symmetry exhibited by several modern species. Perhaps a taxonomic distinction between Hantzschia and Nitzschia lies in whether the morphogenetic machinery associated with valve morphogenesis moves laterally in the same or in opposite directions.  相似文献   

12.
Rhoicosphenia Grun. has been placed by some authors in the monoraphid group with Achnanthes Bory and Cocconeis Ehrenb., and by others near Gomphonema Ehrenb. In order to clarify the systematic position of the genus, the morphology and anatomy of the vegetative cells of Rh. curvata (Kütz.) Grun. were investigated using light and electron microscopy. The structure and formation of the two types of valve are described, and the heterovalvy shown to be of a different type from that of the monoraphids; on the basis of raphe, valve and girdle structure a close relationship between these and Rhoicosphenia is unlikely. Rhoicosphenia shows many resemblances to Gomphonema but the types of pore occlusion present, coupled with apparently slight differences in the mucilage-secreting structures and the girdle, suggest that classification in the same family is unwise. The cryptic asymmetry of the valves, and in particular of the raphe system, is noted and explained with reference to their formation; with respect to this asymmetry two configurations of the valves can occur (named cis and trans types) and the distribution of these in raphid genera is discussed briefly. In view of the lack of evidence in raphid diatoms supporting a classification of bands into copulae and pleurae, it is recommended that this practice be suspended.  相似文献   

13.
The present study clarifies the fine structure of the vegetative frustules, initial valves and perizonium of Achnanthes crenulata Grunow. The valves of the vegetative cell are distinctly linear‐lanceolate with an undulate margin. The valve face is quite flat and in girdle view is smoothly curved as in species of Gephyria (Bacillariophyceae). However, the valve face of the initial cells is slightly rounded and does not have an undulate margin. Furthermore, the rapheless sternum is centrally positioned along the apical axis of the araphid initial valve. As this taxon develops from auxospore to initial valve, it forms only longitudinal perizonial bands; no transverse bands arise. The perizonium consists of three silicified bands: one large, central longitudinal plate and two bands that underlie this plate; these two bands are either open or closed. This taxon has several conspicuous structures compared to other marine species of Achnanthes, but the structure of the perizonium supports the position of A. crenulata within Achnanthes sensu stricto.  相似文献   

14.
The ultrastructure of the oval, fusiform and triradiate morphotypes of Phaeodactylum tricornutum Bohlin is described. The organization and structure of the cytoplasmic organelles is similar in all three morphotypes, except that the vacuoles occupy the extra volume created by the arms of the fusiform and triradiate cells. The frustule in fusiform and triradiate cells is organic; in the oval type it may be organic or one of the valves may have a silica frustule surrounded by an organic wall. In all cells, the organic cell wall has up to 10 silica bands (13 nm wide) embedded in its surface in the girdle region, lacks girdle bands, and has an outer corrugated cell wall layer, except in the girdle region. Cell division, organic wall formation and silica deposition are described in detail. Four types of oval cells are also described. The relation to other diatoms is discussed.  相似文献   

15.
Uniparental auxosporulation was observed in a monoclonal culture of a Sellaphora clone isolated from the epipelon of a fishpond in the Czech Republic. The cox1 sequence for the clone confirmed that it belonged to the Sellaphora pupula–bacillum species complex but showed significant differences from all previously characterized Sellaphora species, and it is therefore described as S. marvanii sp. nov. Protoplast, valve, and girdle structure resembled those of other Sellaphora species, but a novel finding for all diatoms was a change in girdle structure during the life cycle: the most advalvar girdle band (valvocopula) bore a single line of pores in enlarged postauxospore cells but was entirely plain in small cells and gametangia. The young auxospores were covered by incunabula containing large, delicate, ± circular scales, resembling those of centric diatom auxospores; similar scales have been reported in a few other raphid diatoms (Pseudo‐nitzschia multiseries, Diploneis sp.) but contrast with the strip incunabula of some Nitzschia and Pinnularia and the helmet‐like caps of Neidium. The scales persisted during auxospore expansion, mostly as two caps over the auxospore poles. The transverse perizonium comprised a very wide, closed primary band, flanked by numerous secondary bands whose open ends were strongly incurved toward the center. Initial valves were differentiated from their immediate descendants by the very strong external demarcation of the raphe sternum, irregular shape, and curved transapical profile.  相似文献   

16.
The initial epivalve of Rhoicosphenia curvata (Kütz.) Grun. differs from vegetative valves in having a strongly arched section, a wide hyaline marginal strip, no pseudosepta, an unthickened margin, and a terminal raphe fissure at the head pole. The initial epivalve is of the D type, with short raphe fissures. The epicingulum consists of three bands as usual, but they are narrower and more delicate than those of vegetative cells. The initial hypovalve and hypocingulum are similar in every way to those of vegetative cells, except for the rounded section of the hypovalve. During size reduction the almost isopolar outline of the initial valves and their immediate descendants gives way to an increasingly strong heteropolarity, and this is accompanied by changes in the relative lengths of the raphe slits and the shape of the central area. Different populations have different gametangium and initial cell sizes, suggesting the presence of races within the species. The structure of the initial cell indicates that Rhoicosphenia is less closely related to the monoraphid genera than to the gomphocymbelloid genera, confirming conclusions reached from studies of the vegetative cell and auxospore formation. Rhoicosphenia should therefore be separated into a new family, the Rhoicospheniaceae, which is described.  相似文献   

17.
The morphology of the valve of Coscinodiscus wailesii and the development of its siliceous architecture, studied in the SEM and TEM, is compared with valve formation in Thalassiosira eccentrica (Ehrenberg.) Cleve. Though the areolae-architecture of these two species differs in such that the cribrum is proximal and the foramen distal in T. eccentrica, and in C. wailesii the cribrum is distal and the foramen proximal, the formation of their complex loculate system is similar, displacing a centrifugal growth pattern with respect to the valve, and a proximal to distal, sequentially. During base layer formation a hitherto undescribed rib system outlines the prospective areolae. The vertical differentiation is in principle the same as in T. eccentrica and also the cribra are formed centripetally in relation to the areolae in both species. The location of the cribra at the proximal or distal side, therefore, seems to be of minor importance for the sequence of silica deposition. Variation in girdle bands is discussed with respect to cell division. The prophasic nuclear migration from the interphase position to the girdle bands, where mitosis is performed, seems to be necessary for triggering the formation of the unilateral cleavage furrow that later forms a cleavage ring with excentric position. The divided nuclei migrate with the ingrowing cleavage furrow to the center of the newly created protoplasmic surfaces to initiate valve formation.  相似文献   

18.
Scanning electron microscopic studies of silica valve formation in naviculoid diatoms representing six different genera revealed that the precise sequence of depositional events varied among genera. Valve deposition begins with the formation of the raphe sternum, from which virgae (lateral outgrowths) extend. Areolae (pores) are formed between the virgae by the fusion of cross-extensions (vimines). In most of the species studied ( Craticula ambigua (Kützing) D. G. Mann, Frustulia vulgaris (Thwaites) De Toni, Craspedostauros australis E. J. Cox, and Gomphonema truncatum Ehrenberg), areola (pore) formation began near the raphe sternum before completion of the valve margin, but in Pinnularia gibba Ehrenberg the valve margin fused before the areolae were formed. Silica deposition in all these taxa was mainly distal to proximal (with respect to the cytoplasm), but in Haslea sp. it was mainly proximal to distal. Haslea also differed in that areolae were defined as the valve margin was completed. These data have also contributed to the interpretation of taxonomically important features, such as raphe endings. In P. gibba the internal central raphe fissures were laterally deflected but subsequently obscured by additional silicification of the valve, whereas in G. truncatum they were initially straight, becoming laterally deflected as valves mature. External raphe fissures in Frustulia became Y-shaped only just before maturity; in immature valves they were dotlike, as in Amphipleura Kützing. The comparison of developmental pathways in diatoms is a useful adjunct to morphological and other approaches in diatom systematics and warrants renewed attention.  相似文献   

19.
New structural details of the frustules of the diatom Triceratium favus Ehrenberg seen in the scanning electron microscope are reported. Significant new observations concern the pores of the hexagonal chambers, accessory structures (spines, dendritic processes) on the outer surfaces of the hexagonal chambers, the value margins and girdle structure.  相似文献   

20.
Micromorphogenesis within the silica deposition vesicle (SDV) of the diatom Pinnularia viridis (Nitzsh) Ehrenb. resulted in distinct silica nanostructures and layers within forming valves and girdle bands. These siliceous components were similarly disclosed following alkaline etching of mature valves/girdle bands, where their different susceptibilities to dissolution over time resulted from apparent differences in silica density and/or chemistry. The bulk of silica appeared to be deposited at the interface of the forming valve or girdle band with the silicalemma and occurred by the outward expansion of microfibrils of silica that aligned perpendicularly to the silicalemma. Microfibrils originated from both sides of the “silica lamella,” the first nanostructure formed within the SDV, and several silica species of distinct nanostructure and density resulted, including distinctive inner and outermost silica “coverings” of mature valves/girdle bands and the central and terminal nodules. Not all silica deposition and micromorphogenesis occurred in contact with the expanding silicalemma, but was somehow directed within the SDV cavity, and resulted in the distinct silica layers that lined the raphe fissures and poroids. Following alkaline etching, the inner surfaces of valves/girdle bands, as well as the silica layers lining the raphes, poroids, and slits, were determined to be significantly more resistant to alkaline etching than the exterior surfaces, while the outer silica coating and the nodules were quickly dissolved. The processes of micromorphogenesis must have exerted precise control over the chemical nature of the silica formed at different positions within the SDV and affected the overall structure and function of the diatom wall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号