首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Changes to the primary successional environment caused by colonizing plants that present symbiotic associations with nitrogen-fixing bacteria were investigated at two areas on Mount St. Helens. One area was occupied by alder (Alnus viridis) thickets and old lupine (Lupinus lepidus) patches and the other area by young lupine patches and pumice barrens. Alder thicket soils had higher levels for a few soil nutrients and had greater cover by other pioneer species as compared to old lupine patches. Many soil nutrients, including nitrogen and soil organic matter, were below detection limits in old lupine patches but not in alder thicket soils. Young lupine patch soils were generally not different from barren site soils but had greater cover by other pioneer species. Below detection nitrogen and soil organic matter levels also occurred in many barren soil samples but not in young lupine patch soils. Barren soils were moister than were the other sites. The apparent increase in soil fertility has not led to invasion by later successional species, perhaps due to dry conditions or to other inhibitory factors. Seedbanks, composed of early successional species, appear to be developing in these areas.  相似文献   

2.
Question: Is there a difference in plant species and life form composition between two major patch types at a biome transition zone? Are subordinate species associated with different patch types at the shortgrass steppe — Chihuahuan desert grassland transition zone? Is this association related to differences in soil texture between patch types and the geographic range of associated species? Location: central New Mexico, USA. Methods: Patches dominated by either Bouteloua gracilis, the dominant species in the shortgrass steppe, or Bouteloua eriopoda, dominant species in the Chihuahuan desert grasslands, were sampled for the occurrence of subordinate species and soil texture within a 1500‐ha transitional mosaic of patches. Results: Of the 52 subordinate species analysed, 16 species were associated with B. gracilis‐dominated patches and 12 species with B. eriopoda‐dominated patches. Patches dominated by B. gracilis were richer in annual grasses and forbs, whereas patches dominated by B. eriopoda contained more perennials forbs and shrubs. Soils of B. gracilis‐dominated patches had higher clay and lower rock contents compared with soils of B. eriopoda‐dominated patches. Differences in species characteristics of the dominant species as well as differences in soil texture between patch types contribute to patch‐scale variation in composition. The association of species to patch types was not related to their geographic range and occurrence in the adjacent biomes. Conclusions: Patch types at this biome transition zone have characteristic life‐form and species composition, but species are associated to patch types due to local constraints, independently from their affinity to the adjacent biomes.  相似文献   

3.
Plant species can influence nitrogen (N) cycling indirectly through the feedbacks of litter quality and quantity on soil N transformation rates. The goal of this research was to focus on small-scale (within-community) variation in soil N cycling associated with two community dominants of the moist meadow alpine tundra. Within this community, the small-scale patchiness of the two most abundant species (Acomastylis rossii and Deschampsia caespitosa) provides natural variation in species cover within a relatively similar microclimate, thus enabling estimation of the effects of plant species on soil N transformation rates. Monthly rates of soil N transformations were dependent on small-scale variation in both soil microclimate and species cover. The relative importance of species cover compared with soil microclimate increased for months 2 and 3 of the 3-month growing season. Growing-season net N mineralization rates were over ten times greater and nitrification rates were four times greater in Deschampsia patches than in Acomastylis patches. Variability in litter quality [carbon:nitrogen (C:N) and phenolic:N], litter quantity (aboveground and fine-root production), and soil quality (C:N) was associated with three principal components. Variability between the species in litter quality and fine-root production explained 31% of the variation in net N mineralization rates and 36% of net nitrification rates. Site variability across the landscape in aboveground production and soil C:N explained 33% of the variation in net N mineralization rates and 21% of net nitrification rates. Within the moist meadow community, the high spatial variability in soil N transformation rates was associated with differences in the dominant species' litter quality and fine-root production. Deschampsia-dominated patches consistently had greater soil N transformation rates than did Acomastylis-dominated patches across the landscape, despite site variability in soil moisture, soil C:N, and aboveground production. Plant species appear to be an important control of soil N transformation in the alpine tundra, and consequently may influence plant community structure and ecosystem function.  相似文献   

4.
5.
Abstract. Seed banks in cattle dung, soil under cattle dung and soil under vegetation and growth response of plant species to the changes in soil nitrogen availability were studied in an alvar limestone grassland on Öland, Sweden, in order to analyse the impact of dung deposition and decomposition on the formation of patches of plant species. Results suggest that patches of four plant species could result from cattle dung deposition and decomposition. Impact of dung could proceed in three ways: (1) by changing the relative abundance of species in the soil seed bank under dung, and/or (2) by influencing the deposition of seeds in the dung, and/or (3) by intensifying the growth of some species through nutrient release. Species patches could result from one or more of these aspects. For instance, patches of Arenaria serpyllifolia may be induced by dung deposition because of the dominance of its seeds in dung, while the pattern of Cerastium semidecandrum and Festuca ovina may be due to the abundance of their seeds in the soil seed bank under dung and their positive growth response to increased nitrogen availability.  相似文献   

6.
Direct and indirect interactions among plants contribute to shape community composition through above‐ and belowground processes. However, we have not disentangled yet the direct and indirect soil and canopy effects of dominants on understorey species. We addressed this issue in a semi‐arid system from southeast Spain dominated by the legume shrub Retama sphaerocarpa. During a year with an exceptionally dry spring, we removed the shrub canopy to quantify aboveground effects and compared removed‐canopy plots to open plots between shrubs to quantify soil effects, both with and without watering. We added a grass removal treatment in order to separate direct from indirect shrub effects and quantified biomass, abundance, richness and composition of the forb functional group. With watering, changes in forb biomass were primarily driven by indirect shrub effects, with contrasting negative soil and positive aboveground indirect effects; changes in forb abundance and composition were more influenced by direct shrub soil effects with contrasting species composition between open and Retama patches. As community composition was different between open and Retama patches the indirect effects of Retama on forb species did not concern forbs from the open community but forbs from Retama patches. Indirect effects are, thus, important at the functional group level rather than at the species level. Without watering, there were no significant interactions. Changes in species richness between treatments were weak and seldom significant. We conclude that shrub effects on understorey forbs are primarily due to their influence on soil properties, directly affecting forb species composition but indirectly affecting the biomass of the forbs of the Retama patches, and only with sufficient water.  相似文献   

7.
Interference at the level of fine roots in the field was studied by detailed examination of fine root distribution in small soil patches. To capture roots as they occur in natural three-dimensional soil space, we used a freezing and slicing technique for microscale root mapping. The location of individual roots intersecting a sliced soil core surface was digitized and the identity of shrub and grass roots was established by a chemical technique. Soil patches were created midway between the shrub, Artemisia tridentata, and one of two tussock grasses, Pseudoroegneria spicata or Agropyron desertorum. Some soil patches were enriched with nutrients and others given only deionized water (control); in addition, patches were located between plants of different size combination (large shrubs with small tussock grasses and small shrubs with large tussock grasses). The abundance of shrub and grass roots sharing soil patches and the inter-root distances of individual fine roots were measured. Total average rooting density in patches varied among these different treatment combinations by only a factor of 2, but the proportion of shrub and grass roots in the patches varied sixfold. For the shrub, the species of grass roots sharing the patches had a pronounced influence on shrub root density; shrub roots were more abundant if the patch was shared with Pseudoroegneria roots than if shared with Agropyron roots. The relative size of plants whose roots shared the soil patches also influenced the proportion of shrub and grass roots; larger plants were able to place more roots in the patches than were the smaller plants. In the nutrient-enriched patches, these influences of grass species and size combination were amplified. At the millimeter- to centimeter-scale within patches, shrub and grass roots tended to segregate, i.e., avoid each other, based on nearest-neighbor distances. At this scale, there was no indication that the species-specific interactions were the result of resource competition, since there were no obvious patterns between the proportion of shrub and grass roots of the two species combinations with microsite nutrient concentrations. Other potential mechanisms are discussed. Interference at the fine-root level, and its species-specific character, is likely an influential component of competitive success, but one that is not easily assessed.  相似文献   

8.
We tested whether both shrubs and grasses are able to develop similar active fine-root systems in the upper soil layer of the arid Patagonian Monte ecosystem with non-seasonal precipitation. We selected in the field shrub patches consisting of one isolated modal plant of the dominant shrub Larrea divaricata Cav., grass patches formed by one or more bunches of the dominant grass Stipa tenuis Phil. (15 cm diameter), and mixed patches consisting of one individual of L. divaricata with bunches of S. tenuis under its canopy. We assessed the biomass, regrowth, and activity of fine roots (diameter <1.4 mm) of each species in the upper soil (50 cm depth) of each patch type at 3-month intervals. We also measured the N concentration in fine roots to estimate the relative contribution of each species to fine-root biomass of mixed patches. We injected Li+ in the soil as a chemical tracer to detect fine-root activity of each species in the upper soil. Fine-root biomass was higher in mixed patches than in grass patches while fine-root biomass in shrub patches did not differ from the two former. We did not find differences in fine-root regrowth among patch types. Li+ injection provided evidence of active fine roots of both species in the upper soil when it was wet. N concentration in fine roots suggested the prevalence of fine roots of L. divaricata in the upper soil of mixed patches. Our results support evidence of the ability of fine roots of both the shrub and the grass species to occupy the upper soil. These findings did not support the two-layer model (H Walter, Ecology of tropical and subtropical vegetation, Oliver and Boyd, Edinburgh, 1971) and provide evidence of this model would be less applicable to arid ecosystems with non-seasonal precipitation. Further, our results highlighted some issues deserving more research such as the outcome of belowground competition between neighboring plants of both contrasting life forms, the eventual limited fine-root carrying capacity of the upper soil, and differences in fine-root lifespan between species of both contrasting life form.  相似文献   

9.
Question: Does the spatial pattern of nutrient supply modify community biomass responses to changes in both species composition and richness? Location: Duke University Phytotron (Durham, North Carolina, USA). Methods: We conducted a microcosm experiment to evaluate individual plant and whole community responses to species richness, species composition and soil nutrient heterogeneity. The experiment consisted of seven levels of species composition (all possible combinations of Lolium perenne, Poa pratensis and Plantago lanceolata) crossed with three levels of soil nutrient distribution (homogeneous, heterogeneous‐up, and heterogeneous‐down, where up and down indicates the location of a nutrient patch in either the upper or the lower half of the soil column, respectively). Results: Communities containing Plantago and Lolium responded to nutrient heterogeneity by increasing above‐ and below‐ground biomass. Nutrient heterogeneity also increased size inequalities among individuals of these species. Significant species composition X nutrient heterogeneity interactions on community biomass and individual size inequality were observed when nutrient patches were located in the upper 10 cm of the soil columns. However, root proliferation in nutrient patches was equivalent regardless of the vertical placement of the patch. Conclusions: Our results suggest that nutrient heterogeneity may interact with plant species composition to determine community biomass, and that small‐scale vertical differences in the location of nutrient patches affect individual and community responses to this heterogeneity.  相似文献   

10.
Redlegged earth mite, Halotydeus destructor, is a major pest of pastures and crops in Australia, and also feeds on lower plants on the soil surface. Feeding behaviour is reviewed, and the role of Arctotheca calendula, capeweed, in determining occurrence and abundance in pastures is investigated. Mites fed more and produced more progeny on Trifolium subterraneum (subclover) than on capeweed in non-choice experiments. In pastures with mixed species three times more mites were feeding on subclover than on capeweed foliage. However, twice as many mites were found on the soil surface under pasture patches consisting mainly of capeweed than of subclover. Patches were selected on the basis of pasture height, irrespective of plant composition. Twice as many mites were found in populations under patches of tall than short pasture. The daytime relative humidity was higher in tall than short patches, and the temperature slightly lower, making tall patches a more favourable niche for these mites. Ninety per cent of H. destructor were on the soil surface, while 10% were feeding on the upper canopy of pasture. The proportion of each population that was feeding was greater on subclover than capeweed, and subclover was a more suitable food. In Australia H. destructor occurs in regions with mixed pasture species, grown in rotation with grain crops. The ability of H. destructor to utilize foliage of a range of plant species of differing suitability for food, while living mostly on the soil surface in niches favourable for survival, has enabled it to become very abundant.  相似文献   

11.
Summary Root proliferation in nutrient-rich soil patches is an important mechanism facilitating nutrient capture by plants. Although the phenomenon of root proliferation is well documented, the specific timing of this proliferation has not been investigated. We studied the timing and degree of root proliferation for three perennial species common to the Great Basin region of North America: a shrub, Artemisia tridentata, a native tussock grass, Agropyron spicatum, and an introduced tussock grass, Agropyron desertorum. One day after we applied nutrient solution to small soil patches, the mean relative growth rate of Agropyron desertorum roots in these soil patches was two to four times greater than for roots of the same plants in soil patches reated with distilled water. Most of the increased root growth came from thin, laterally branching roots within the patches. This rapid and striking root proliferation by Agropyron desertorum occurred in response to N-P-K enrichment as well as to P or N enrichment alone. A less competitive bunchgrass, Agrophyron spicatum, showed no tendency to proliferate roots in enriched soil patches during these two-week experiments. The shrub Artemisia tridentata proliferated roots within one day of initial solution injection in the N-enrichment experiment, but root proliferation of this species was more gradual and less consistent in the N-P-K and P-enrichment experiments, respectively. The ability of Agropyron desertorum to proliferate roots rapidly may partly explain both its general competitive success and its superior ability to exploit soil nutrients compared to Agropyron spicatum in Great Basin rangelands of North America.  相似文献   

12.
Clonal fragments of the stoloniferous herb Glechoma longituba were subjected to a complementary patchiness of light and soil nutrients including two spatially homogeneous treatments (SR–SR and IP–IP) and two spatially heterogeneous treatments (IP–SR and SR–IP). SR and IP indicate patches (shaded, rich) with low light intensity (shaded, S), high nutrient availability (rich, R) and patches (illuminated, poor) with high light intensity (illuminated, I) and low nutrient availability (poor, P), respectively. Plasticity of the species in root–shoot ratio, fitness-related traits (biomass, number of ramets and dry weight per ramet) and clonal morphological traits (length and specific length of stolon internodes, area and specific area of laminae, length and specific length of petioles) were experimentally examined. The aim is to understand adaptation of G. longituba to the environment with reciprocal patches of light and soil nutrients by plasticities both in root–shoot ratio and in (clonal) morphology. Our experiment revealed performance of the clonal fragments growing from patches with high light intensity and low soil nutrient availability into the adjacent opposite patches was increased in terms of the fitness-related characters. R/S ratio and clonal morphology were plastic. Meanwhile, the capture of light resource from the light-rich patches was enhanced while the capture of soil nutrients from either the nutrient-rich or the nutrient-poor patches was not. Analysis of cost and benefit disclosed positive effects of clonal integration on biomass production of ramets in the patches with low light intensity and high soil nutrient availability. These results suggest an existence of reciprocal translocation of assimilates and nutrients between the interconnected ramets. The reinforced performance of the clonal fragments seems to be related with specialization of clonal morphology in the species.  相似文献   

13.
Background: Forest succession in tropical pastures usually starts from woody vegetation patches. Patches may arise within the grass matrix at microsites with favourable soil conditions or through facilitation by established nurse plants.

Aims: We report the formation of woody vegetation patches in tropical pastures after investigating whether patch formation was associated with micro-scale terrain features and whether facilitation was important for patch initiation.

Methods: The study was conducted in three pasture sites in the Atlantic forest domain of Brazil. We compared soil, terrain and species abundance patterns among pairs of woody patch and open pasture plots.

Results: The effect of variation in soil physical and chemical attributes was limited. Some species were able to establish in the grass matrix and survive disturbance from grazing and fire, while other species only established in patches, under other already established trees or shrubs. Some of these species were exotics, which are commonly eliminated in restoration efforts.

Conclusions: Allowing the establishment of species capable of withstanding pasture environments, including exotics, can accelerate succession. Furthermore, the abilities to endure competition from grasses and survive fire are key features of species suitable for the initial stages of forest restoration in tropical pastures.  相似文献   

14.
Abstract. The potential of two perennial species (Larrea divaricata and Stipa tenuis) to colonize different soil microsites was analyzed in the Patagonian Monte shrubland. We hypothesize that the short-lived grass S. tenuis is more able to colonize the soil of microsites beneath vegetation patches where N-fertility is higher than those in bare soil, while the long-lived shrub L. divaricata colonizes different soil microsites irrespective of their N fertility. A greenhouse experiment was carried out to evaluate the emergence and survival of both species in different soil microsites at different water, inorganic N and seed densities. In all cases soil microsites were seed limited since the addition of viable seeds increased seedling emergence. Both species showed, however, different abilities to emerge and survive in different soil microsites. Microsites of bare soil were more favourable for seedling emergence and survival of L. divaricata than those beneath vegetation patches, independent of their water status. This ability of L. divaricata can not be explained on the basis of increased water or N availability, but probably because of lower salt content of bare soil. The addition of inorganic N reduced the survival of L. divaricata in both microsites but increased individual plant performance. The emergence and survival of S. tenuis was not different in both types of soil microsites but the addition of inorganic N increased seedling emergence and plant biomass. According to these results, emergence and plant performance of S. tenuis may be promoted during humid years by increased concentration of inorganic N. Since N mineralization occurs at a higher rate in soil microsites beneath vegetation patches than in those of bare soil, higher plant performance and probably establishment of S. tenuis is to be expected. These results are consistent with an existing conceptual model of plant dynamics under various grazing intensities in the Patagonian Monte shrubland based on previous field observations.  相似文献   

15.
Topo-community structure and dynamics were studied in mixed cool temperate forests, using the regeneration dynamics, to clarify the maintenance mechanisms of community patterns along a microtopographic gradient. The 76 stands studied were classified into two groups (i.e. convex slope and concave slope stands). The soil surface was more eroded on the concave slope than on the convex slope, while water potential was not significantly different between topographies. On the convex slope, even-aged patches alternated between young phase patches dominated by shade intolerant species, such asAcer rufinerve andBetula grossa, and mature phase patches, withTsuga sieboldii andFagus crenata. A slower lateral growth rate ofTsuga canopy trees and the absence of suppressed saplings in the mature phase may prolong the gap phase, which provides a favorable situation to shade-intolerant species. On the concave slope, patch structure was less clear, and process of replacement of canopy species by previously suppressed individuals of the same species was seen in the mature phase, which was mainly composed ofF. crenata, Fagus japonica, Acer sieboldianum andStewartia pseudo-camellia. Gaps on the concave slope were formed frequently but were generally closed within 10 years by lateral growth of deciduous canopy trees and by upgrowth of suppressed trees, and thus some individuals underwent recurrent periods of suppression until they reached the canopy. We concluded that soil surface stability and gap encroachment pattern are critical to the maintenance of the community pattern along a microtopographic gradient.  相似文献   

16.
Tozer  M.G.  Bradstock  R.A. 《Plant Ecology》2003,164(2):213-223
Overstorey shrub species are known to influence the composition of theunderstorey in Southern Hemisphere heathlands. Overstorey densities aresusceptible to variations in fire frequency; thus, fire regimes may influenceoverstorey/understorey interactions and overall floristic composition. Wecompared patches of Banksia heath which had supported anoverstorey during a fire interval of about 30 y with patches wherethe overstorey was absent during the same period, and tested for differences inspecies composition as a function of overstorey presence. Floristic compositionvaried significantly between overstorey patches and open patches. Most specieswere less abundant in overstorey patches, however some were more abundant. Therelative abundance of species in relation to overstorey was unrelated to theirfire response, propagule longevity or propagule storage location. There wassignificantly less biomass in overstorey patches compared with open patches.Theeffect of the overstorey varied with soil moisture. In a dry area, the numberof species was lower in overstorey patches, with fewer herb and shrub speciespresent compared with open patches. Fewer species were recorded in a wetterarea, but overstorey had no effect on the number of species recorded. Reducedintensity of competition among understorey species in overstorey patches couldbe responsible for the higher abundance of some species in these patches. Wepostulate that full diversity will be maintained when the density of overstoreyshrubs fluctuates widely over a relatively short period of time. This is mostlikely when fire frequency is highly variable.  相似文献   

17.
Kerley  S. J.  Leach  J. E.  Swain  J. L.  Huyghe  C. 《Plant and Soil》2000,222(1-2):241-253
In calcareous soils, genotypes of Lupinus albus L. generally grow poorly, resulting in stunted plants that often develop lime-induced chlorosis. In contrast, some genotypes of L. pilosus Murr. occur naturally in calcareous soils without developing any visible symptoms of stress. Some genotypic variation for tolerance to calcareous soil does exist in L. albus and the tolerance mechanisms need to be determined. The adaptation through root system morphological plasticity of L. albus and L. pilosus, to heterogeneous limed soil profiles (pH 7.8) containing either patches of acid (non-limed) soil, or vertically split between acid and limed soil, was investigated. When grown in the presence of patches of acid soil, L. albus had a 52% greater shoot dry weight and visibly greener leaves compared with plants grown in the homogeneous limed soil. Total root dry matter in the acid-soil patches was greater than in the control limed-soil patches. This was due to a four-fold increase in the cluster root mass, accounting for 95% of the root dry matter in the acid-soil patch. Although these cluster roots secreted no more citric acid per unit mass than those in the limed soil did, their greater mass resulted in a higher citrate concentration in the surrounding soil. L. pilosus responded to the patches of acid soil in a manner comparable with L. albus. When grown in the homogeneous limed soil, L. pilosus had a greater maximum net CO2 assimilation rate (Pmax) than L. albus, however, the Pmax of both species increased after they had accessed a patch of acid soil. Differences were apparent between the L. albus genotypes grown in soil profiles split vertically into limed and acid soil. A genotype by soil interaction occurred in the partitioning between soils of the cluster roots. The genotype La 674 was comparable with L. pilosus and produced over 11% of its cluster roots in the limed soil, whereas the other genotypes produced only 1–3% of their cluster roots in the limed soil. These results indicate L. pilosus is better adapted to the limed soil than L. albus, but that both species respond to a heterogeneous soil by producing mainly cluster roots in an acid-soil patch. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
We described seasonal changes in fine‐root biomass of a grass and a shrub dominant species in a plant community characteristic of the arid Patagonian Monte and then we inferred to want extent the observed differences could contribute to the species coexistence. We selected representative plant patches of the natural vegetation arrangement consisting of one isolated plant of the dominant shrub Larrea divaricata (Ld), grass patches formed by one or more bunches of the dominant grass Nassella tenuis (Nt), and mixed patches consisting of one individual of L. divaricata with bunches of N. tenuis under its canopy (LdNt). We assessed the biomass and temporal changes in fine roots of each species in the upper soil (50 cm depth) of each patch type at three‐month intervals during 2 years. The temporal series of fine‐root biomass were compared among patch types and in relation to above‐ground phenology, as well as climate variables (precipitation, arid index and air temperature). Seasonal changes in fine‐root biomass showed similar cycles in the three plant patches with a maximum in spring. The maximum increase in root biomass in Ld and Nt patches occurred during the onset of reproductive growth in winter and spring, respectively. Fine‐root changes in LdNt patches mimicked that in Ld patches. Precipitation inputs were significantly positively and temperature negatively related to fine‐root changes in Nt patches. Fine‐root changes in Ld and LdNt patches were related to the aridity index (positively) and temperature (negatively). We concluded that the observed asynchronies in the date of the largest increases in root biomass and its climate control between the studied grass and shrub species could contribute to the coexistence of plants of both life forms when they overlap their root systems growing in mixed patches. Mechanisms underlying the root patterns observed should be further explored.  相似文献   

19.
The spatial distribution of soil invertebrates is aggregated with high-density patches alternating with low-density zones. A high degree of spatio-temporal organization generally exists with identified patches of specific species assemblages, in which species coexist according to assembly rules related to competitive mechanisms for spatial and trophic resources occur. However, these issues have seldom been addressed. The spatio-temporal structure of a native earthworm community in a natural savanna and a grass–legume pasture in the Colombian “Llanos” was studied during a 2-year-period. A spatially explicit sampling design (regular grid) was used to discern the distribution pattern of species assemblages in both systems. Earthworms were collected from small soil pits at three different sampling dates. Data collected from 1 m2 soil monoliths were also used in the present study. Data were analyzed with the partial triadic analysis (PTA) and correlograms, while niche overlap was computed with the Pianka index. The PTA and correlogram analysis revealed that earthworm communities displayed a similar stable spatial structure in both systems during the 2-year study period. An alternation of population patches where different species' assemblages dominated was common to all sampling dates. The medium-sized Andiodrilus sp. and Glossodrilus sp. exhibited a clear spatial opposition in natural savanna and the grass–legume pasture for the duration of the study. The Pianka index showed a high degree of niche overlapping in several dimensions (vertical distribution, seasonality of population density) between both species. The inclusion of space-time data analysis tools as the PTA and the use of classical ecological indices (Pianka) in soil ecology studies may improve our knowledge of earthworm assemblages' dynamics.  相似文献   

20.
Alpine Trifolium species have high rates of symbiotic N2-fixation which may influence the abundance and growth of plant species growing near them. The potential for facilitative effects on plant abundance and growth in dry meadow alpine tundra of Niwot Ridge, Colo., characterized by low resource availability, was investigated by measuring soil N, aboveground biomass production, and plant species composition in patches of Trifolium dasyphyllum and surrounding tundra. Extractable inorganic N was more than twofold greater and extractable P was 27% lower in Trifolium patches than in surrounding tundra. Aboveground production was twofold greater in Trifolium patches than in surrounding tundra. However, the difference was largely due to the production of T. dasyphyllum relative to the non-Trifolium component of biomass, which was not different between the Trifolium patches and surrounding tundra. In the Trifolium patches, the proportion of graminoid biomass was lower while the proportion of forb biomass was higher relative to surrounding tundra. Although the abundance of some species was positively associated with the presence of Trifolium, other species were less abundant, possibly due to increased competition for P and differential abilities of alpine species to respond to increased N availability. Trifolium may exert both facilitative and inhibitive effects on dry meadow alpine species and, in the process, substantially influence the spatial heterogeneity in community structure and primary production. Received: 14 October 1997 / Accepted: 2 February 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号