首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Penicillium citrinum was found to catalyze the reduction of methyl 4-bromo-3-oxobutyrate to methyl (S)-4-bromo-3-hydroxybutyrate [(S)-BHBM] with high optical purity. From the strain, a cDNA clone encoding a novel NADPH-dependent alkyl 4-halo-3-oxobutyrate reductase (KER) was isolated. Escherichia coli cells overexpressing KER produced (S)-BHBM in the presence of an NADPH-regeneration system.  相似文献   

2.
The enzymatic production of (S)-4-bromo-3-hydroxybutyrate has been poorly studied compared with (S)-4-chloro-3-hydroxybutyrate. This can be attributed to the toxicity of bromide for biocatalysis. Recently, we isolated cDNA that encodes Penicillium citrinum β-keto ester reductase (KER) and the gene that encodes Leifsonia sp. alcohol dehydrogenase, which catalyzes the reduction of methyl 4-bromo-3-oxobutyrate to methyl (S)-4-bromo-3-hydroxybutyrate with high optical purity and productivity and expressed them in Escherichia coli. Moreover, protein engineering was performed using error-prone PCR-based random mutagenesis to improve the thermostability and enantioselectivity of KER. This review focuses on the establishment of a novel biotechnological process for the production of (S)-4-bromo-3-hydroxybutyrate using E. coli transformants. This process is suitable for industrial production of (S)-4-bromo-3-hydroxybutyrate, an intermediate for statin compounds.  相似文献   

3.
Penicillium citrinum β-keto ester reductase (KER) can catalyze the reduction of methyl 4-bromo-3-oxobutyrate (BAM) to methyl (S)-4-bromo-3-hydroxybutyrate with high optical purity. To improve the thermostability of KER, protein engineering was performed using error-prone polymerase chain reaction-based random mutagenesis. Variants with the highest levels of thermostability contained the single amino acid substitutions L54Q, K245R, and N271D. The engineered L54Q variant of KER retained 62% of its initial activity after heat treatment at 30°C for 6 h, whereas wild-type KER showed only 15% activity. The L54Q substitution also conferred improved enantioselectivity by KER. An Escherichia coli cell biocatalyst that overproduced the L54Q mutant of KER and glucose dehydrogenase as a cofactor regeneration enzyme showed the highest level of BAM reduction in a water/butyl acetate two-phase system.  相似文献   

4.
A novel -keto ester reductase (KER) was purified to homogeneity from recombinant Escherichia coli (pTrcKER) cells, which efficiently expressed the ker gene cloned from Penicillium citrinum IFO4631. The enzyme was monomeric and had a molecular mass of 37 kDa. It catalyzed the reduction of some -keto esters, especially alkyl 4-halo-3-oxobutyrates. However, it did not catalyze the reverse reaction, the dehydrogenation of alkyl 4-halo-3-hydroxybutyrates and other alcohols. The enzyme required NADPH as a cofactor and showed no activity with NADH. Therefore, it was defined as a NADPH-dependent aldo–keto reductase (AKR3E1), belonging to the AKR superfamily. The enzyme stereospecifically produced methyl (S)-4-bromo-3-hydroxybutyrate from its keto derivative with high stereospecificity (97.9% enantiomer excess). E. coli cells expressing KER and glucose dehydrogenase in the water/butyl acetate two-phase system achieved a high productivity of (S)-4-bromo-3-hydroxybutyrate (277 mM, 54 mg/ml) in the organic solvent layer.  相似文献   

5.
An NADP+ —dependent reversible 3-hydroxycarboxylate oxidoreductase present in Clostridium tyrobutyricum has been purified. As judged by gel electrophoresis the enzyme was pure after a 940-fold enrichment by four chromatographic steps. Its molecular mass was estimated to be 40–43 kDa. The enzyme was most active at pH 4.5 in the reduction of 3-oxobutyrate. Other substrates were 3-oxovalerate, 3-oxocaproate, 3-oxoisocaproate and 4-chloro-3-oxobutyrate. Except for the latter all substrates were converted enantioselectively to (S)-3-hydroxy acids in the presence of NADPH. 4-Chloro-3-oxobutyrate was reduced to the (R)-3-hydroxy acid. The specific activity of the enzyme was about 1400 mol min–1 mg–1 protein for the reduction of 3-oxobutyrate at pH 5.0. The Michaelis constant (K m) values for 3-oxobutyrate, 3-oxovalerate and 3-oxocaproate were determined to be 0.22, 1.6 and 3.0 mM, respectively. The K m values for dehydrogenation of (S)-3-hydroxybutyrate, (S)-3-hydroxyvalerate and (S)-3-hydroxycaproate were found to be 2.6, 1.1 and 5.2 mM, respectively. The identity of 43 of the first 45 N-terminal amino acid residues has been determined. So far such enzyme activities have been described in eucaryotes only.Dedicated to Prof. A. Trebst on the occasion of his 65th birthday  相似文献   

6.
Enantioselective reductions of ethyl 3-oxobutanoates with fermenting cells or acetone treated cells of Geotrichum candidum gave 3-hydroxyesters with different ee and different predominant configurations depending on reaction conditions. Ethyl 4-bromo-3-oxobutanoate was reduced with APG4 and NADH to give predominantly ethyl (R)-4-bromo-3 hydroxybutanoate while the (S)-configuration was predominant when NADPH was the cofactor. Moreover, when the catalyst was heated before the reaction, the ee was increased indicating that the enzyme giving the (S)-alcohol is more thermolabile than the other.  相似文献   

7.
An NADH-dependent (S)-specific 3-oxobutyryl-CoA reductase from Clostridium tyrobutyricum was purified 15-fold with a yield of 46%. It was homogeneous by gel electrophoresis after three chromatographic steps. The apparent molecular mass was estimated by column chromatography to be 240 kDa. SDS-gel electrophoresis revealed the presence of 33 kDa subunits. Substrates of the enzyme were ethyl and methyl 3-oxobutyrate, 3-oxobutyryl-N-acetylcysteamine thioester, and 3-oxobutyryl coenzyme A. The specific activities were 340 and 10 U (mg protein)-1 for the reduction of 3-oxobutyryl coenzyme A and ethyl 3-oxobutyrate, respectively; the Michaelis constants were 300 M and 300 mM, respectively. The identity of 12 N-terminal amino acid residues was determined. The ezmyme was used in a preparative reduction of substrate, yielding ethyl (S)-3-hydroxybutyrate (>99% enantiomeric excess).  相似文献   

8.
(±)-Dihydrozeatin was synthesized in a 3-step synthesis by: (1) a Michael condensation of methyl methacrylate with nitromethane to give (±) - methyl 2 - methyl - 4 - nitrobutyrate, which was (2) reduced to (±) - 4 -amino - 2 - methylbutan - 1 - ol and (3) reaction of the aminoalcohol with 6-chloropurine. Hydrolysis of racemic nitroester gave (±) - 2 - methyl - 4 - nitrobutyric acid, which was resolved by means of (+) - and (-) -α -methylbenzylamine salts. Conversion of the salts to the corresponding methyl esters and subsequent reductions yielded optically active 4 - amino 2 - methylbutan - 1 - ols. Examination of the NMR spectra of the resolved methyl 2 - methyl - 4 - nitrobutyrates in the presence of a chiral shift reagent established their optical purities to be greater than 98%. The specific rotations at 589 nm of theS- (?) andR- (+)- dihydrozeatins derived from optically active butanols were appreciably lower than previously reported. Application of the Drude equation to ORD values from 320 to 589 nm verified the low 589 nm rotations of the dihydrozeatin enantiomers. The biological activities of (R), (S) and (R,S) dihydrozeatins in the betacyanin stimulation assay withAmaranthus parallel the activities found in other cytokinin bioassays.  相似文献   

9.
Methyl 4-O-benzoyl-6-bromo-6-deoxy-α-d-glucopyranoside, obtainable from methyl 4,6-O-benzylidene-α-d-glucopyranoside (1), was converted into the 2,3-unsaturated 4-benzoate (3) by application of the triiodoimidazole method. Debenzoylation of 3, followed by acetylation, afforded crystalline methyl 4-O-acetyl-6-bromo-2,3,6-trideoxy-α-d-erythro-hex-2-enopyranoside (5). Treatment of 5 with benzylmethylamine under conditions of palladium-catalyzed, allylic substitution gave a separable mixture of the corresponding 4-(N-benzyl)methylamino-6-bromo-2-enoside (37%) and the 4,6-di-[(N-benzyl)methylamino]-2-enoside (55%). Debromination of 5 with lithium triethylborohydride, proceeding with simultaneous deacetylation, readily yielded methyl 2,3,6-trideoxy-α-d-erythro-hex-2-enopyranoside (8). The 4-acetate of 8 (obtained by reacetylation), and also its 4-benzoate (prepared by a different synthetic route), furnished high yields (~80%) of methyl 4-[(N-benzyl)-methylamino]-2,3,4,6-tetradeoxy-α-d-erythro-hex-2-enopyranoside (13) upon palladium-catalyzed animation with benzylmethylamine. Catalytic hydrogenation of 13 effected saturation of the alkenic double bond and removal of the N-benzyl group, to afford methyl 2,3,4,6-tetradeoxy-4-methylamino-α-d-erythro-hexopyranoside, which was subsequently N-methylated with formaldehyde and sodium borohydride, to give its N,N-dimethyl analog, methyl α-d-forosaminide (15). The overall yield of 15 from 1 was 24%. Hydrolysis of 15 to the free sugar has been described previously.  相似文献   

10.
Addition of 5-bromo-2′,3′-O-isopropylidene-5′-O-trityluridine (2) in pyridine to an excess of 2-lithio-1,3-dithiane (3) in oxolane at 78° gave (6R)-5,6-dihydro-(1,3-dithian-2-yl)-2′,3′-O-isopropylidene -5′-O-trityluridine (4), (5S,6S)-5-bromo-5,6-dihydro-(1,3-dithian-2-yl)-2′,3′-O-isopropylidene-5′-O-trityluridine (5), and its (5R) isomer 6 in yields of 37, 35, and 10%, respectively. The structure of 4 was proved by Raney nickel desulphurization to (6S)-5,6-dihydro-2′,3′-O-isopropylidene-6-methyl-5′-O-trityluridine (7) and by acid hydrolysis to give D-ribose and (6R)-5,6-dihydro-6-(1,3-dithian-2-yl)uracil (9). Treatment of 4 with methyl iodide in aqueous acetone gave a 30&%; yield of (R,S)-5,6-dihydro-6-formyl-2′,3′-O-isopropylidene-5′-O-trityl-uridine (10), characterized as its semicarbazone 11. Both 5 and 6 gave 4 upon brief treatment with Raney nickel. Both 5 and 6 also gave 6-formyl-2′,3′-O-isopropylidene-5′- O-trityluridine (12) in ~41%; yield when treated with methyl iodide in aqueous acetone containin- 10%; dimethyl sulfoxide. A by-product, identified as the N-methyl derivative (13) of 12 was also formed in yields which varied with the amount of dimethyl sulfoxide used. Reduction of 12 with sodium borohydride, followed by deprotection, afforded 6-(hydroxymethyl)uridine (17), characterized by hydrolysis to the known 6-(hydroxymethyl)uracil (18). Knoevenagel condensation of a mixture of the aldehydes 12 and 13 with ethyl cyanoacetate yielded 38%; of E- (or Z-)6-[(2-cyano-2-ethoxycarbonyl)ethylidene]-2′,3′-O-isopropylidene-5′-O-trityluridine (19) and 10%; of its N-methyl derivative 20. Hydrogenation of 19 over platinum oxide in acetic anhydride followed by deprotection gave R (or S)-6-(3-amino-2-carboxypropyl)uridine (23).  相似文献   

11.
Treatment of methyl 13(S)-hydroperoxy-9(Z), 11(E)-octadecadienoate with vanadium oxyacetylacetonate led to the formation of two diastereometric α,β-epoxy alcohols, i.e. methyl 11(R), 12(R)-epoxy-13(S)-hydroxy-9(Z)-octadecenoate and methyl 11(S), 12(S)-epoxy-13(S)-hydroxy-9(Z)-octadecenoate. The epoxy alcohols underwent spontaneous hydrolysis into isomeric trihydroxyesters. The first mentioned epoxy alcohol afforded methyl 9(R), 12(S), 13(S)- and methyl 9(S), 12(S), 13(S)-trihydroxy-10(E)-octadecenoates as major hydrolysis products whereas the latter epoxy alcohol afforded methyl 9(R), 12(R), 13(S)- and methyl 9(S), 12(R)-13(S)-trihydroxy-10(E)-octadecenoates as major compounds. Smaller amounts of diastereomeric methyl 11,12,13-trihydroxy-9-octadecenoates were also formed from both epoxy alcohols. The vanadium-catalyzed conversion of 13(S)-hydroperoxy-9(Z),11(E)-octadecadienoic acid (13(S)HPOD) (methyl ester) into α,β-epoxy alcohols and their further conversion into trihydroxy derivatives offers a model system for similar transformations of certain poly-unsaturated fatty acids recently described in the fungus, Saprolegnia parasitica.  相似文献   

12.
In the Candida antarctica lipase B-catalyzed hydrolysis of (R,S)-azolides derived from (R,S)-N-protected proline in water-saturated methyl tert-butyl ether (MTBE), high enzyme activity with excellent enantioselectivity (V S V R ?1 ?>?100) for (R,S)-N-Cbz-proline 1,2,4-triazolide (1) and (R,S)-N-Cbz-proline 4-bromopyrazolide (2) was exploited in comparison with their corresponding methyl ester analog (3). Changing of the substrate structure, water content, solvent, and temperature was found to have profound influences on the lipase performance. On the basis of enzyme activity and enantioselectivity and solvent boiling point, the best reaction condition of using 1 as the substrate in water-saturated MTBE at 45 °C was selected and further employed for the successful resolution of (R,S)-N-Cbz-pipecolic 1,2,4-triazolide (5) and (R,S)-N-Boc-nipecotic 1,2,4-triazolide (9). Moreover, more than 89.1 % recovery of remained (R)-1 is obtainable in five cycles of enzyme reusage, when pH 7 phosphate buffers were employed as the extract at 4 °C.  相似文献   

13.
  • 1.1. The kinetic parameters of the cytosolic epoxide hydrolase were examined with two sets of spectrophotometric substrates. The (2S,3S)- and (2R,3R)-enantiomers of 4-nitrophenyl trans-2,3-epoxy-3-phenylpropyl carbonate had a Kmof 33 and 68 μm and a Vmax of 16 and 27 μmol/min/mg, respectively. With the (2S,3S)- and (2R,3R)- enantiomers of 4-nitrophenyl trans-2,3-epoxy-3-(4-nitrophenyl)propyl carbonate, cytosolic epoxide hydrolase had a KM of 8.0 and 15 μM and a Vmax of 7.8 and 5.0 μmol/min/mg, respectively.
  • 2.2. Glycidyl 4-nitrobenzoate had the lowest I50 of the compounds tested in the glycidyl 4-nitrobenzoate series (I50= 140 μM). The I50 of the (2R)-enantiomer was 3.7-fold higher. The inhibitor with the lowest i50 in the glycidol series, and the lowest I50 of any compound tested, was (2S,3S)-3-(4-nitrophenyl)glycidol (I50 = 13.0μM). It also showed the greatest difference in I50 between the enantiomers (330-fold).
  • 3.3. All enantiomers of glycidyl 4-nitrobenzoates and trans-3-phenylglycidols gave differential inhibition of cytosolic epoxide hydrolase. However, neither the (S,S)-/(S)- or (R,R)-/(R)-enantiomer always had the lower I50.
  • 4.4. Addition of one or more methyl groups to either enantiomer of glycidyl 4-nitrobenzoate resulted in increased I50. However, addition of a methyl group to C2 of either enantiomer of 3-phenylglycidol resulted in a decreased I50. Finally, when the hydroxyl group of trans-3-(4-nitrophenyl)glycidol was esterified the I50 of the (2S,3S)- but not the (2R,3R)-enantiomer increased.
  相似文献   

14.
Both enantiomers of 2,2′-dihydroxy-4,4′,5,5′,6,6′-hexamethybiphenyl (2), a potentially useful chiral synthon, were obtained with >99% ee in high enantioselectivity by cholesterol esterase or porcine pancreas lipase (PPL)-mediated hydrolysis of the corresponding (±)-dipentanoate or (±)-dihexanoate, respectively. Absolute configuration of (S)-3-bromo-2,6′-dimethoxy-4,5,6,2′,3′,4′-hexamethyl-biphenyl (2h) was determined by X-ray analysis.  相似文献   

15.
The discovery of a novel 3H-pyrido[2,3-d]pyrimidin-4-one series as potent and biased sst2 agonists is described. This class of molecules exhibits excellent sst2 potency and selectivity against sst1, sst3, and sst5 receptors, and they are significantly more potent at inhibiting cAMP production than inducing internalization. The orally bioavailable 6-(3-chloro-5-methylphenyl)-3-(3-fluoro-5-hydroxyphenyl)-5-({methyl[(2S)-pyrrolidin-2-ylmethyl]amino}methyl)-3H,4H-pyrido[2,3-d]pyrimidin-4-one (36) also suppresses GH secretion in GHRH-challenged rats in a dose-dependent manner.  相似文献   

16.
Two new isodrimene sesquiterpene derivatives, 2(S)-hydroxyalbicanol (1, =(2S,4aS,8S,8aS)-8-(hydroxymethyl)-4,4,8a-trimethyl-7-methylenedecahydronaphthalen-2-ol) and 2(S)-hydroxyalbicanol 11-acetate (2, =((1S,4aS,7S,8aS)-7-hydroxy-5,5,8a-trimethyl-2-methylenedecahydronaphthalen-1-yl)methyl acetate) were isolated from the culture broth of the fungus Polyporus arcularius, together with two phenylpropanediols, (1S,2S)- and (1R,2S)-1-phenyl-1,2-dihydroxypropane (3, 4). Compound 3 is reported as a naturally occurring compound for the first time. The structures of the compounds were elucidated on the basis of spectroscopic analysis. Compound 1 exhibited growth inhibition of lettuce seedlings with IC50 values of 1.3 mM to hypocotyl and 1.7 mM to radicle.  相似文献   

17.
Influenza virus infection constitutes a significant health problem in need of more effective therapies. We have recently identified ((2R,3S,4R,5R)-3-acetoxy-5-(4-benzamido-2-oxopyrimidin-1(2H)-yl)-4-fluoro-3,4-dimethyl-tetrahydrofuran-2-yl) methyl benzoate (18c) as a potent influenza virus inhibitor. We now here report the synthesis and evaluation of a series of C-3′ modified ribose nucleosides. These novel compounds were prepared, primarily by taking known ((2R,3R,4R)-3-benzoyloxy-4-fluoro-4-methyl-5-oxo-tetrahydrofuran-2-yl)methyl benzoate (1) and converting it in to C-3 keto sugar (7), reacting C-3 keto group with methyl magnesium bromide, followed by coupling these sugars with purine and pyrimidine bases. Anti influenza viral activity was determined by screening against both A and B viral strains.  相似文献   

18.
Methyl 2-O-benzoyl-3-bromo-3,6-dideoxy-α-l-altropyranoside (4) and methyl 2-O-benzoy]-3-bromo-3,6-dideoxy-4-O-methyl-α-l-altropyranoside (5) have been prepared from methyl-α-l-rhamnopyranoside, respectively, in 2 and 3 steps. Reduction of 4 with lithium aluminium hydride followed by acid hydrolysis afforded the 3,6-dideoxy-l-arabino-bexose (l-ascarylose). The anhydro sugars 8 and 9 have been used as intermediates in the stereoselective synthesis of 6-deoxy-3-O-methyl-l-altropyranose (l-vallarose) and of 3-amino-3-degxy-l-altro sugars. Under azidolysis conditions, and according to the temperature, 5 gave unsaturated sugars such as 20 and the derived 26, or azido compounds such as 21 and 24, and the derived sugar methyl 2-amino-2,3,6-trideoxy-α-l-threo-hexopyranosid-4-ulose (25).  相似文献   

19.
The biological methyl donor S-adenosyl-l-methionine (AdoMet) is spontaneously degraded by inversion of its sulfonium center to form the R,S diastereomer. Unlike its precursor, (S,S)-AdoMet, (R,S)-AdoMet has no known cellular function and may have some toxicity. Although the rate of (R,S)-AdoMet formation under physiological conditions is significant, it has not been detected at substantial levels in vivo in a wide range of organisms. These observations imply that there are mechanisms that either dispose of (R,S)-AdoMet or convert it back to (S,S)-AdoMet. Previously, we identified two homocysteine methyltransferases (Mht1 and Sam4) in yeast capable of recognizing and metabolizing (R,S)-AdoMet. We found similar activities in worms, plants, and flies. However, it was not established whether these activities could prevent R,S accumulation. In this work, we show that both the Mht1 and Sam4 enzymes are capable of preventing R,S accumulation in Saccharomyces cerevisiae grown to stationary phase; deletion of both genes results in significant (R,S)-AdoMet accumulation. To our knowledge, this is the first time that such an accumulation of (R,S)-AdoMet has been reported in any organism. We show that yeast cells can take up (R,S)-AdoMet from the medium using the same transporter (Sam3) used to import (S,S)-AdoMet. Our results suggest that yeast cells have evolved efficient mechanisms not only for dealing with the spontaneous intracellular generation of the (R,S)-AdoMet degradation product but for utilizing environmental sources as a nutrient.  相似文献   

20.
The volatile oil of Artemisia arbuscula arbuscula contained a new irregular monoterpene, 2,5-dimethyl-4-vinyl-1,5-hexadiene-3-ol (isolyratol), which was isolated and identified by spectral means. The optically pure furanoid (2S,5S)-trans-5-methyl-5-vinyltetrahydrofur-2-yl methyl ketone (arbusculone), was also characterized by transformation to known (2S,5S)-trans-linalyl oxide. The former component has never been isolated from natural sources prior to this study. The neutral pentane extract also contained several previously characterized non-head-to-tail monoterpenes including artemiseole, artemisia ketone, artemisyl acetate, methyl santolinate, and santolina triene, as well as the regular monoterpenes 1,8-cineole, camphor, p-cymene, camphene and the C6 fragment, terelactone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号