首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
Decorin is a small proteoglycan, composed of 12 leucine-rich repeats (LRRs) that modulates the activity of transforming growth factor type β (TGF-β) and other growth factors, and thereby influences proliferation and differentiation in a wide array of physiological and pathological processes, such as fibrosis, in several tissues and organs. Previously we described two novel modulators of the TGF-β-dependent signaling pathway: LDL receptor-related protein (LRP-1) and decorin. Here we have determined the regions in decorin that are responsible for interaction with LRP-1 and are involved in TGF-β-dependent binding and signaling. Specifically, we used decorin deletion mutants, as well as peptides derived from internal LRR regions, to determine the LRRs responsible for these decorin functions. Our results indicate that LRR6 and LRR5 participate in the interaction with LRP-1 and TGF-β as well as in its dependent signaling. Furthermore, the internal region (LRR6i), composed of 11 amino acids, is responsible for decorin binding to LRP-1 and subsequent TGF-β-dependent signaling. Furthermore, using an in vivo approach, we also demonstrate that the LRR6 region of decorin can inhibit TGF-β mediated action in response to skeletal muscle injury.  相似文献   

2.
Extracellular matrix deposition and tissue scarring characterize the process of fibrosis. Transforming growth factor beta (TGFβ) and Insulin-like growth factor binding protein-3 (IGFBP-3) have been implicated in the pathogenesis of fibrosis in various tissues by inducing mesenchymal cell proliferation and extracellular matrix deposition. We identified Syndecan-2 (SDC2) as a gene induced by TGFβ in an IGFBP-3-dependent manner. TGFβ induction of SDC2 mRNA and protein required IGFBP-3. IGFBP-3 independently induced production of SDC2 in primary fibroblasts. Using an ex-vivo model of human skin in organ culture expressing IGFBP-3, we demonstrate that IGFBP-3 induces SDC2 ex vivo in human tissue. We also identified Mitogen-activated protein kinase-interacting kinase (Mknk2) as a gene induced by IGFBP-3. IGFBP-3 triggered Mknk2 phosphorylation resulting in its activation. Mknk2 independently induced SDC2 in human skin. Since IGFBP-3 is over-expressed in fibrotic tissues, we examined SDC2 levels in skin and lung tissues of patients with systemic sclerosis (SSc) and lung tissues of patients with idiopathic pulmonary fibrosis (IPF). SDC2 levels were increased in fibrotic dermal and lung tissues of patients with SSc and in lung tissues of patients with IPF. This is the first report describing elevated levels of SDC2 in fibrosis. Increased SDC2 expression is due, at least in part, to the activity of two pro-fibrotic factors, TGFβ and IGFBP-3.  相似文献   

3.
4.
Shi L  Chang Y  Yang Y  Zhang Y  Yu FS  Wu X 《PloS one》2012,7(2):e32128
Connective Tissue Growth Factor (CTGF) and Transforming growth factor-β1 (TGF-β1) are key growth factors in regulating corneal scarring. Although CTGF was induced by TGF-β1 and mediated many of fibroproliferative effects of TGF-β1, the signaling pathway for CTGF production in corneal scarring remains to be clarified. In the present study, we firstly investigated the effects of c-Jun N-terminal kinase (JNK) on CTGF expression induce by TGF-β1 in Telomerase-immortalized human cornea stroma fibroblasts (THSF). Then, we created penetrating corneal wound model and determined the effect of JNK in the pathogenesis of corneal scarring. TGF-β1 activated MAPK pathways in THSF cells. JNK inhibitor significantly inhibited CTGF, fibronectin and collagen I expression induced by TGF-β1 in THSF. In corneal wound healing, the JNK inhibitor significantly inhibited CTGF expression, markedly improved the architecture of corneal stroma and reduced corneal scar formation, but did not have a measurable impact on corneal wound healing in vivo. Our results indicate that JNK mediates the expression of CTGF and corneal scarring in corneal wound healing, and might be considered as specific targets of drug therapy for corneal scarring.  相似文献   

5.
6.
Acetylcholine (ACh) has been reported to play various physiological roles, including wound healing in the cornea. Here, we study the role of ACh in the transition of corneal fibroblasts into myofibroblasts, and in consequence its role in the onset of fibrosis, in an in vitro human corneal fibrosis model. Primary human keratocytes were obtained from healthy corneas. Vitamin C (VitC) and transforming growth factor‐β1 (TGF‐β1) were used to induce fibrosis in corneal fibroblasts. qRT‐PCR and ELISA analyses showed that gene expression and production of collagen I, collagen III, collagen V, lumican, fibronectin (FN) and alpha‐smooth muscle actin (α‐SMA) were reduced by ACh in quiescent keratocytes. ACh treatment furthermore decreased gene expression and production of collagen I, collagen III, collagen V, lumican, FN and α‐SMA during the transition of corneal fibroblasts into myofibroblasts, after induction of fibrotic process. ACh inhibited corneal fibroblasts from developing contractile activity during the process of fibrosis, as assessed with collagen gel contraction assay. Moreover, the effect of ACh was dependent on activation of muscarinic ACh receptors. These results show that ACh has an anti‐fibrotic effect in an in vitro human corneal fibrosis model, as it negatively affects the transition of corneal fibroblasts into myofibroblasts. Therefore, ACh might play a role in the onset of fibrosis in the corneal stroma.  相似文献   

7.
Excess scarring of the conjunctiva after glaucoma filtration surgery is a major cause of failure. Transforming growth factor (TGF)-β is critically involved in post-operative scarring. Lithium inhibits TGF-β-induced gene protein expression in corneal fibroblasts and inhibits TGF-β-induced epithelial mesenchymal transition. Here, we investigated the effects of LiCl on TGF-β1-mediated signaling pathways and on myofibroblast transdifferentiation of human Tenon’s capsule fibroblasts (HTFs). LiCl treatment reduced expression of TGF-β1-induced α-SMA expression in HTFs. LiCl also decreased Akt phosphorylation induced by TGF-β1. TGF-β1-induced α-SMA expression was significantly decreased by LY294002 and Akt siRNA indicating that these changes are mediated by the PI3K/Akt pathway. Thus, LiCl induces the suppression of transdifferentiation stimulated by TGF-β1 by the regulation of PI3K/Akt signaling in HTFs.  相似文献   

8.
Patients with end-stage kidney disease on peritoneal dialysis often develop progressive scarring of the peritoneal tissues. This manifests as submesothelial thickening and is associated with increased vascularization that leads to ultrafiltration dysfunction. Hypoxia induces a characteristic series of responses including angiogenesis and fibrosis. We investigated the role of hypoxia in peritoneal membrane damage. An adenovirus expressing transforming growth factor (TGF) β was used to induce peritoneal fibrosis. We evaluated the effect of the mTOR inhibitor rapamycin, which has been previously shown to block hypoxia-inducible factor (HIF) 1α. We also assessed the effect of HIF1α independently using an adenovirus expressing active HIF1α. To identify the TGFβ1-independent effects of HIF1α, we expressed HIF1α in the peritoneum of mice lacking the TGFβ signalling molecule Smad3. We demonstrate that TGFβ-induced fibroproliferative tissue is hypoxic. Rapamycin did not affect the early angiogenic response, but inhibited angiogenesis and submesothelial thickening 21 days after induction of fibrosis. In primary mesothelial cell culture, rapamycin had no effect on TGFβ-induced vascular endothelial growth factor (VEGF) but did suppress hypoxia-induced VEGF. HIF1α induced submesothelial thickening and angiogenesis in peritoneal tissue. The fibrogenic effects of HIF1α were Smad3 dependent. In summary, submesothelial hypoxia may be an important secondary factor, which augments TGFβ-induced peritoneal injury. The hypoxic response is mediated partly through HIF1α and the mTOR inhibitor rapamycin blocks the hypoxic-induced angiogenic effects but does not affect the direct TGFβ-mediated fibrosis and angiogenesis.  相似文献   

9.
Corneal fibroblasts exhibit different phenotypes in different phases of corneal wound healing. In the inflammatory phase, the cells assume a proinflammatory phenotype and produce large amounts of cytokines and chemokines, but in the proliferative and remodeling phases, they adapt a profibrotic state, differentiate into myofibroblasts and increase extracellular matrix protein synthesis, secretion, and deposition. In the present study, the molecular mechanisms regulating the transition of corneal fibroblasts from the proinflammatory state to the profibrotic state were investigated. Corneal fibroblasts were treated with TGFβ, a known profibrotic and anti‐inflammatory factor in wound healing, in the absence or presence of trichostatin A (TSA), a histone deacetylase (HDAC) inhibitor. The results revealed that TGFβ induced the profibrotic transition of corneal fibroblasts, including increased extracellular matrix synthesis, morphological changes, and assembly of actin filaments. Meanwhile, proinflammatory gene expressions of corneal fibroblasts were down‐regulated with the treatment of TGFβ, as confirmed by cDNA microarray, real time PCR and ELISA. Moreover, TSA reversed the TGFβ‐mediated transition of corneal fibroblasts from the proinflammatory state to the profibrotic state, as accompanied by histone hyperacetylations. In conclusion, TGFβ suppressed the production of proinflammatory factors and enhanced the expression of matrix remodeling genes of corneal fibroblasts in the transition from the proinflammatory state to the profibrotic state, and the dual roles of TGFβ on the phenotype regulations of corneal fibroblasts were mediated by altered histone acetylation. J. Cell. Physiol. 224:135–143, 2010 © 2010 Wiley‐Liss, Inc.  相似文献   

10.
Hypertrophic scarring is a frequent fibroproliferative complication following deep dermal burns leading to impaired function and lifelong disfigurement. Decorin reduces fibrosis and induces regeneration in many tissues, and is significantly downregulated in hypertrophic scar and normal deep dermal fibroblasts. It was hypothesized that microRNAs in these fibroblasts downregulate decorin and blocking them would increase decorin and may prevent hypertrophic scarring. Lower decorin levels were found in hypertrophic scar as compared to normal skin, and in deep as compared to superficial dermis. A decorin 3’ un-translated region reporter assay demonstrated microRNA decreased decorin in deep dermal fibroblasts, and microRNA screening predicted miR- 24, 181b, 421, 526b, or 543 as candidates. After finding increased levels of mir-181b in deep dermal fibroblasts, it was demonstrated that TGF-β1 stimulation decreased miR-24 but increased miR-181b and that hypertrophic scar and deep dermis contained increased levels of miR-181b. By blocking miR-181b with an antagomiR, it was possible to increase decorin protein expression in dermal fibroblasts. This suggests miR-181b is involved in the differential expression of decorin in skin and wound healing. Furthermore, blocking miR-181b reversed TGF-β1 induced decorin downregulation and myofibroblast differentiation in hypertrophic scar fibroblasts, suggesting a potential therapy for hypertrophic scar.  相似文献   

11.
Fetal wounds heal without scar formation, fibrosis, or contracture. Compared with adult wounds, they are characterized by major differences in the extracellular matrix and the absence of myofibroblastic cells. The reasons for these differences are not well known and determination of factors affecting the absence of scarring in the fetus may lead to strategies for controlling adult pathological scarring. In the present study, we have assessed the effects of serum on the behavior of normal human dermal fibroblasts. Using an in vitro approach, we investigated the effects of fetal and adult serum on cell properties such as growth rate, collagen synthesis, gelatinase activities, and differentiation to myofibroblasts using biochemical, morphological, and ultrastructural parameters. We studied the induction of α-smooth muscle (α-SM) actin in fibroblasts, and its correlation with increased collagen gel contraction by the cells. Our results showed that, compared with FBS (fetal bovine serum), postnatal calf serum (PCS) decreased mitogenic activity and collagenase synthesis but not collagen synthesis. Furthermore, cells cultured with PCS differentiated to myofibroblasts with an increase in cell diameter, number of stress fibers, α-SM actin expression, and collagen gel contraction. To characterize the molecules involved in this differentiation process, the amount of transforming growth factor β (TGFβ) in FBS and PCS was determined and the effect of neutralizing anti-TGFβ antibody was evaluated. It was determined that FBS contained more TGFβ than PCS, but that essentially all the TGFβ was latent in both sera. However, results obtained with anti-TGFβ antibody show that active TGFβ is present when human dermal fibroblasts are cultured with medium containing PCS. These results suggest that, in the presence of PCS but not FBS, the cells either produce active TGFβ or an enzyme that is able to activate latent serum TGFβ. Alternatively, sera may contain two different forms of latent TGFβ, the PCS form being activated by the dermal fibroblast cells. A similar mechanism may be involved, at least in part, in skin wound healing and may underlie the appearance of myofibroblasts in postnatal wounds. J. Cell. Physiol. 171:1–10, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

12.
The role of Decorin in organising the extracellular matrix was examined in normal human corneas and in corneas from patients with Congenital Stromal Corneal Dystrophy (CSCD). In CSCD, corneal clouding occurs due to a truncating mutation (c.967delT) in the decorin (DCN) gene. Normal human Decorin protein and the truncated one were reconstructed in silico using homology modelling techniques to explore structural changes in the diseased protein. Corneal CSCD specimens were also examined using 3-D electron tomography and Small Angle X-ray diffraction (SAXS), to image the collagen-proteoglycan arrangement and to quantify fibrillar diameters, respectively. Homology modelling showed that truncated Decorin had a different spatial geometry to the normal one, with the truncation removing a major part of the site that interacts with collagen, compromising its ability to bind effectively. Electron tomography showed regions of abnormal stroma, where collagen fibrils came together to form thicker fibrillar structures, showing that Decorin plays a key role in the maintenance of the order in the normal corneal extracellular matrix. Average diameter of individual fibrils throughout the thickness of the cornea however remained normal.  相似文献   

13.
Background and aimPancreatic fibrosis increases pancreatic cancer risk in chronic pancreatitis (CP). Pancreatic stellate cells (PSCs) play a critical role in pancreatic fibrosis by transforming growth factor-β (TGFβ) has been shown to inhibit transforming growth factor-β receptor (TGFβR)-mediated Smad and no-Smad signaling pathways. Thus, the effects of Hsp90 inhibitor on pancreatic fibrosis are evaluated in CP mice, and the association between Hsp90 and biological functions of PSCs is further investigated in vitro.MethodsThe effects of Hsp90 inhibitor 17AAG on pancreatic fibrosis were assessed in caerulein-induced CP mice, and primary PSCs were used to determine the role of Hsp90 inhibitor 17AAG in vitro.ResultsWe observed increased expression of Hsp90 in pancreatic tissues of caerulein-induced CP mice. Hsp90 inhibitor 17AAG ameliorated pancreatic inflammation and fibrosis in caerulein-induced CP mice. In vitro, Hsp90 inhibitor 17AAG inhibited TGFβ1-induced activation and extracellular matrix accumulation of PSCs by blocking TGFβR-mediated Smad2/3 and PI3K /Akt/GSK-3β signaling pathways.Hsp90 inhibitor 17AAG degraded TGFβRII by a ubiquitin-proteasome pathway, co-immunoprecipitation showed an interaction between Hsp90 and TGFβRII in PSCs.ConclusionsThe study suggests that an Hsp90 inhibitor 17AAG remarkable prevents the development of pancreatic fibrosis in caerulein-induced CP mice, and suppresses activation and extracellular matrix accumulation of PSCs in vitro. The current results provide a potential treatment strategy based on Hsp90 inhibition for pancreatic fibrosis in CP.  相似文献   

14.
Decorin, small leucine-rich proteoglycan, has been shown to modulate angiogenesis in nonocular tissues. This study tested a hypothesis that tissue-selective targeted decorin gene therapy delivered to the rabbit stroma with adeno-associated virus serotype 5 (AAV5) impedes corneal neovascularization (CNV) in vivo without significant side effects. An established rabbit CNV model was used. Targeted decorin gene therapy in the rabbit stroma was delivered with a single topical AAV5 titer (100 μl; 5×10(12) vg/ml) application onto the stroma for two minutes after removing corneal epithelium. The levels of CNV were examined with stereomicroscopy, H&E staining, lectin, collagen type IV, CD31 immunocytochemistry and CD31 immunoblotting. Real-time PCR quantified mRNA expression of pro- and anti-angiogenic genes. Corneal health in live animals was monitored with clinical, slit-lamp and optical coherence tomography biomicroscopic examinations. Selective decorin delivery into stroma showed significant 52% (p<0.05), 66% (p<0.001), and 63% (p<0.01) reduction at early (day 5), mid (day 10), and late (day 14) stages of CNV in decorin-delivered rabbit corneas compared to control (no decorin delivered) corneas in morphometric analysis. The H&E staining, lectin, collagen type IV, CD31 immunostaining (57-65, p<0.5), and CD31 immunoblotting (62-67%, p<0.05) supported morphometric findings. Quantitative PCR studies demonstrated decorin gene therapy down-regulated expression of VEGF, MCP1 and angiopoietin (pro-angiogenic) and up-regulated PEDF (anti-angiogenic) genes. The clinical, biomicroscopy and transmission electron microscopy studies revealed that AAV5-mediated decorin gene therapy is safe for the cornea. Tissue-targeted AAV5-mediated decorin gene therapy decreases CNV with no major side effects, and could potentially be used for treating patients.  相似文献   

15.
The response of alveolar epithelial cells (AECs) to lung injury plays a central role in the pathogenesis of pulmonary fibrosis, but the mechanisms by which AECs regulate fibrotic processes are not well defined. We aimed to elucidate how transforming growth factor-β (TGFβ) signaling in lung epithelium impacts lung fibrosis in the intratracheal bleomycin model. Mice with selective deficiency of TGFβ receptor 2 (TGFβR2) in lung epithelium were generated and crossed to cell fate reporter mice that express β-galactosidase (β-gal) in cells of lung epithelial lineage. Mice were given intratracheal bleomycin (0.08 U), and the following parameters were assessed: AEC death by terminal deoxynucleotidyl transferase dUTP-mediated nick-end labeling assay, inflammation by total and differential cell counts from bronchoalveolar lavage, fibrosis by scoring of trichrome-stained lung sections, and total lung collagen content. Mice with lung epithelial deficiency of TGFβR2 had improved AEC survival, despite greater lung inflammation, after bleomycin administration. At 3 wk after bleomycin administration, mice with epithelial TGFβR2 deficiency showed a significantly attenuated fibrotic response in the lungs, as determined by semiquantitatve scoring and total collagen content. The reduction in lung fibrosis in these mice was associated with a marked decrease in the lung fibroblast population, both total lung fibroblasts and epithelial-to-mesenchymal transition-derived (S100A4(+)/β-gal(+)) fibroblasts. Attenuation of TGFβ signaling in lung epithelium provides protection from bleomycin-induced fibrosis, indicating a critical role for the epithelium in transducing the profibrotic effects of this cytokine.  相似文献   

16.
Decorin is a small leucine-rich extracellular matrix proteoglycan composed of a core protein with a single glycosaminoglycan (GAG) chain near the N-terminus and N-glycosylated at three potential sites. Decorin is involved in the regulation of formation and organization of collagen fibrils, modulation of the activity of growth factors such as transforming growth factor β (TGF-β), and exerts other effects on cell proliferation and behavior. Increasing evidences show that decorin plays an important role in fibrogenesis by regulating TGF-β, a key stimulator of fibrosis, and by directly modulating the degradation of extracellular matrix (ECM) from activated hepatic stellate cells (HSCs). In this study, the core protein of human decorin was cloned and expressed in Escherichia coli. The purified recombinant human decorin (rhDecorin) significantly inhibited the proliferation of LX-2 cells, a human HSC cell line, stimulated by TGF-β1. RT-PCR result showed that the expression of metalloproteinase-2 (MMP-2) and tissue inhibitor of metalloproteinase-1 (TIMP-1) were reduced by rhDecorin in LX-2 cells stimulated by TGF-β1. Furthermore, the protein expression of smooth muscle-α-actin (α-SMA), collagen type III and phosphorylated Smad2 (p-Smad2) was significantly decreased in the presence of rhDecorin. rhDecorin also reduced fibrillogenesis of collagen type I in a dose-dependent manner. Gene expression profiles of LX-2 cells stimulated by TGF-β1 in the presence and the absence of rhDecorin were obtained by using cDNA microarray technique and differentially expressed genes were identified to provide further insight into the molecular action mechanism of decorin on LX-2 cells.  相似文献   

17.
We have cloned and sequenced the cDNAs for quail cornea proteoglycan core proteins, decorin and lumican. Comparison of deduced amino acid sequences shows that two of five amino acid differences in the mature protein between quail and chick decorin, and two of three for lumican, are non-conservative. Ribonuclease protection assay of Day 16 embryonic quail tissues reveals that decorin and lumican are most highly expressed in cornea, and that both are also highly expressed at approximately equal levels in most other tissues. Decorin is highly expressed in sclera and sternum, whereas lumican is expressed in these tissues, as well as in liver, at very low levels. Both decorin and lumican are expressed at lowest levels in brain.  相似文献   

18.
19.
20.
Transforming growth factor beta (TGFβ) is a secreted protein present in the circulation and is a critical regulator of the body's immune system. TGFβ is believed to control several components of the immune system and inhibit autoimmune reactions. Systemic lupus erythematosus (SLE) and Sjögren's syndrome (SS) are prototypical human autoimmune diseases characterized by the circulating autoantibodies directed against nuclear antigens and immune complex deposition in various tissues leading to target organ inflammation and damage. Although the etiology of SLE is unknown, it has been observed that patients with SLE have lower levels of circulating TGFβ than healthy individuals. In addition, mice lacking the TGFβ1 gene develop a severe autoimmune disease that has features of both SS and SLE. Polymorphisms in the TGFβ1 gene may alter the mRNA expression levels and influence the plasma protein concentration. Of the known TGFβ 1 polymorphisms, only the C-509T polymorphism in the promoter region has been shown to be significantly associated with the plasma concentrations of TGFβ 1. In this study, we have conducted a blinded study to determine if the -509 TGFβ1 gene polymorphism is associated with SS or SLE. Genomic PCR and RFLP analysis of a 441 bp sequence encompassing the -509 polymorphism of the TGFβ gene indicated that there were no statistically significant clinical correlations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号