首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
张宏飞  王锁民 《植物学报》2007,24(5):561-571
盐胁迫是影响农业生产的重要环境因素之一。本文对植物Na+吸收的机制和途径、Na+在植物体内的长距离转运以及细胞内Na+稳态平衡的研究进展进行了概述。参与植物Na+吸收与转运的蛋白和通道可能包括HKT、LCT1、AKT和NSCC等。其中, HKT是植物体内普遍存在的一类转运蛋白, 能够介导Na+的吸收, 其结构中的带电氨基酸残基对于其离子选择性有着非常明显的影响。LCT1是从小麦中发现的一类能够介导低亲和性阳离子吸收的蛋白, 然而在典型的土壤Ca2+浓度下LCT1并不能发挥吸收Na+的功能。AKT家族的成员在高盐环境下可能也参与了Na+的吸收。目前虽然还没有克隆到编码NSCC蛋白的基因, 但是NSCC作为植物吸收Na+的主要途径的观点已被广泛接受。SOS1和HKT参与了Na+在根部与植株地上部的长距离转运过程, 它们在木质部和韧皮部的Na+装载和卸载中发挥重要作用, 从而影响植物的抗盐性。另外, 由质膜Na+/H+逆向转运蛋白SOS1、蛋白激酶SOS2以及Ca2+结合蛋白SOS3组成的SOS复合体对细胞的Na+稳态具有重要的调节作用, 单子叶和双子叶植物之间的这种调节机制在结构和功能上具有保守性。SOS复合体与其它位于质膜或液泡膜上的Na+/H+逆向转运蛋白以及H+泵一起调节着细胞的Na+稳态。  相似文献   

2.
A plant's ability to maintain an optimal cytosolic K(+)/Na(+) ratio has long been cited as a key feature of salinity tolerance. As traditional whole-leaf nutrient analysis does not account for tissue and organelle-specific ion sequestration, the predictive value of this index at the whole-plant level is not always satisfactory. Consequently, suitable in situ methods for functionally assessing the activity of the key membrane transporters contributing to this trait at the cellular level need to be developed. The aim of this work was to investigate the extent to which plasma membrane transporter-mediated Na(+) exclusion and KOR-mediated K(+) retention traits, measured with the microelectrode ion flux measuring (MIFE) technique, are inheritable in wheat, and whether the MIFE technique has the potential to be used in combination with molecular markers to determine QTLs for these transporter proteins. Experiments involved two bread (Triticum aestivum) and two durum (Triticum turgidum) wheat lines contrasting in their salinity tolerance. Net Na(+), K(+) and H(+) fluxes were measured from 6-day-old roots of parental lines and their F(1) hybrids upon addition and removal of NaCl. These results were complemented by assessment of whole-plant physiological and agronomic characteristics. We show evidence for a strong heritability of plasma membrane transporter-mediated Na(+) exclusion and K(+) retention traits in wheat at the cellular level. This opens the prospect of using the MIFE technique to map the position of these transporters on particular loci of wheat chromosomes. The next obvious step would be to pyramid these traits in one ideotype with superior salinity tolerance.  相似文献   

3.
High cytosolic concentrations of Na+ inhibit plant growth and development. To maintain low cytosolic concentrations of Na+ , higher plants use membrane-bound transporters that drive the efflux of Na+ or partition Na+ ions from the cytosol, either to the extracellular compartment or into the vacuole. Bryophytes also use an energy-dependent Na+ pumping ATPase, not found in higher plants, to efflux Na+ . To investigate whether this transporter can increase the salt tolerance of crop plants, Oryza sativa has been transformed with the Physcomitrella patens Na+ pumping ATPase (PpENA1). When grown in solutions containing 50 mm NaCl, plants constitutively expressing the PpENA1 gene are more salt tolerant and produce greater biomass than controls. Transgenics and controls accumulate similar amounts of Na+ in leaf and root tissues under stress, which indicates that the observed tolerance is not because of Na+ exclusion. Moreover, inductively coupled plasma analysis reveals that the concentration of other ions in the transformants and the controls is similar. The transgenic lines are developmentally normal and fertile, and the transgene expression levels remain stable in subsequent generations. GFP reporter fusions, which do not alter the ability of PpENA1 to complement a salt-sensitive yeast mutant, indicate that when it is expressed in plant tissues, the PpENA1 protein is located in the plasma membrane. PpENA1 peptides are found in plasma membrane fractions supporting the plasma membrane targeting. The results of this study demonstrate the utility of PpENA1 as a potential tool for engineering salinity tolerance in important crop species.  相似文献   

4.
高等植物Na+吸收、转运及细胞内Na+稳态平衡研究进展   总被引:12,自引:1,他引:11  
盐胁迫是影响农业生产的重要环境因素之一。本文对植物Na 吸收的机制和途径、Na 在植物体内的长距离转运以及细胞内Na 稳态平衡的研究进展进行了概述。参与植物Na 吸收与转运的蛋白和通道可能包括HKT、LCT1、AKT和NSCC等。其中,HKT是植物体内普遍存在的一类转运蛋白,能够介导Na 的吸收,其结构中的带电氨基酸残基对于其离子选择性有着非常明显的影响。LCT1是从小麦中发现的一类能够介导低亲和性阳离子吸收的蛋白,然而在典型的土壤Ca2 浓度下LCT1并不能发挥吸收Na 的功能。AKT家族的成员在高盐环境下可能也参与了Na 的吸收。目前虽然还没有克隆到编码NSCC蛋白的基因,但是NSCC作为植物吸收Na 的主要途径的观点已被广泛接受。SOS1和HKT参与了Na 在根部与植株地上部的长距离转运过程,它们在木质部和韧皮部的Na 装载和卸载中发挥重要作用,从而影响植物的抗盐性。另外,由质膜Na /H 逆向转运蛋白SOS1、蛋白激酶SOS2以及Ca2 结合蛋白SOS3组成的SOS复合体对细胞的Na 稳态具有重要的调节作用,单子叶和双子叶植物之间的这种调节机制在结构和功能上具有保守性。SOS复合体与其它位于质膜或液泡膜上的Na /H 逆向转运蛋白以及H 泵一起调节着细胞的Na 稳态。  相似文献   

5.
6.
Alkali cation exchangers: roles in cellular homeostasis and stress tolerance   总被引:18,自引:0,他引:18  
Uptake and translocation of cations play essential roles in plant nutrition, signal transduction, growth, and development. Among them, potassium (K+) and sodium (Na+) have been the focus of numerous physiological studies because K+ is an essential macronutrient and the most abundant inorganic cation in plant cells, whereas Na+ toxicity is a principal component of the deleterious effects associated with salinity stress. Although the homeostasis of these two ions was long surmised to be fine tuned and under complex regulation, the myriad of candidate membrane transporters mediating their uptake, intracellular distribution, and long-distance transport is nevertheless perplexing. Recent advances have shown that, in addition to their function in vacuolar accumulation of Na+, proteins of the NHX family are endosomal transporters that also play critical roles in K+ homeostasis, luminal pH control, and vesicle trafficking. The plasma membrane SOS1 protein from Arabidopsis thaliana, a highly specific Na+/H+ exchanger that catalyses Na+ efflux and that regulates its root/shoot distribution, has also revealed surprising interactions with K+ uptake mechanisms by roots. Finally, the function of individual members of the large CHX family remains largely unknown but two CHX isoforms, AtCHX17 and AtCH23, have been shown to affect K+ homeostasis and the control of chloroplast pH, respectively. Recent advances on the understanding of the physiological processes that are governed by these three families of cation exchangers are reviewed and discussed.  相似文献   

7.
The salt tolerance locus SOS1 from Arabidopsis has been shown to encode a putative plasma membrane Na(+)/H(+) antiporter. In this study, we examined the tissue-specific pattern of gene expression as well as the Na(+) transport activity and subcellular localization of SOS1. When expressed in a yeast mutant deficient in endogenous Na(+) transporters, SOS1 was able to reduce Na(+) accumulation and improve salt tolerance of the mutant cells. Confocal imaging of a SOS1-green fluorescent protein fusion protein in transgenic Arabidopsis plants indicated that SOS1 is localized in the plasma membrane. Analysis of SOS1 promoter-beta-glucuronidase transgenic Arabidopsis plants revealed preferential expression of SOS1 in epidermal cells at the root tip and in parenchyma cells at the xylem/symplast boundary of roots, stems, and leaves. Under mild salt stress (25 mM NaCl), sos1 mutant shoot accumulated less Na(+) than did the wild-type shoot. However, under severe salt stress (100 mM NaCl), sos1 mutant plants accumulated more Na(+) than did the wild type. There also was greater Na(+) content in the xylem sap of sos1 mutant plants exposed to 100 mM NaCl. These results suggest that SOS1 is critical for controlling long-distance Na(+) transport from root to shoot. We present a model in which SOS1 functions in retrieving Na(+) from the xylem stream under severe salt stress, whereas under mild salt stress it may function in loading Na(+) into the xylem.  相似文献   

8.
Sodium transport in plants: a critical review   总被引:5,自引:0,他引:5  
Sodium (Na) toxicity is one of the most formidable challenges for crop production world-wide. Nevertheless, despite decades of intensive research, the pathways of Na(+) entry into the roots of plants under high salinity are still not definitively known. Here, we review critically the current paradigms in this field. In particular, we explore the evidence supporting the role of nonselective cation channels, potassium transporters, and transporters from the HKT family in primary sodium influx into plant roots, and their possible roles elsewhere. We furthermore discuss the evidence for the roles of transporters from the NHX and SOS families in intracellular Na(+) partitioning and removal from the cytosol of root cells. We also review the literature on the physiology of Na(+) fluxes and cytosolic Na(+) concentrations in roots and invite critical interpretation of seminal published data in these areas. The main focus of the review is Na(+) transport in glycophytes, but reference is made to literature on halophytes where it is essential to the analysis.  相似文献   

9.
10.
Globally, over one-third of irrigated land is affected by salinity, including much of the land under lowland rice cultivation in the tropics, seriously compromising yields of this most important of crop species. However, there remains an insufficient understanding of the cellular basis of salt tolerance in rice. Here, three methods of 24Na+ tracer analysis were used to investigate primary Na+ transport at the root plasma membrane in a salt-tolerant rice cultivar (Pokkali) and a salt-sensitive cultivar (IR29). Futile cycling of Na+ at the plasma membrane of intact roots occurred at both low and elevated levels of steady-state Na+ supply ([Na+]ext=1 mM and 25 mM) in both cultivars. At 25 mM [Na+]ext, a toxic condition for IR29, unidirectional influx and efflux of Na+ in this cultivar, but not in Pokkali, became very high [>100 micromol g (root FW)(-1) h(-1)], demonstrating an inability to restrict sodium fluxes. Current models of sodium transport energetics across the plasma membrane in root cells predict that, if the sodium efflux were mediated by Na+/H+ antiport, this toxic scenario would impose a substantial respiratory cost in IR29. This cost is calculated here, and compared with root respiration, which, however, comprised only approximately 50% of what would be required to sustain efflux by the antiporter. This suggests that either the conventional 'leak-pump' model of Na+ transport or the energetic model of proton-linked Na+ transport may require some revision. In addition, the lack of suppression of Na+ influx by both K+ and Ca2+, and by the application of the channel inhibitors Cs+, TEA+, and Ba2+, questions the participation of potassium channels and non-selective cation channels in the observed Na+ fluxes.  相似文献   

11.
Calcium can ameliorate Na+ toxicity in plants by decreasing Na+ influx through nonselective cation channels. Here, we show that elevated external [Ca2+] also inhibits Na+ -induced K+ efflux through outwardly directed, K+ -permeable channels. Noninvasive ion flux measuring and patch-clamp techniques were used to characterize K+ fluxes from Arabidopsis (Arabidopsis thaliana) root mature epidermis and leaf mesophyll under various Ca2+ to Na+ ratios. NaCl-induced K+ efflux was not related to the osmotic component of the salt stress, was inhibited by the K+ channel blocker TEA+, was not mediated by inwardly directed K+ channels (tested in the akt1 mutant), and resulted in a significant decrease in cytosolic K+ content. NaCl-induced K+ efflux was partially inhibited by 1 mm Ca2+ and fully prevented by 10 mm Ca2+. This ameliorative effect was at least partially attributed to a less dramatic NaCl-induced membrane depolarization under high Ca2+ conditions. Patch-clamp experiments (whole-cell mode) have demonstrated that two populations of Ca2+ -sensitive K+ efflux channels exist in protoplasts isolated from the mature epidermis of Arabidopsis root and leaf mesophyll cells. The instantaneously activating K+ efflux channels showed weak voltage dependence and insensitivity to external and internal Na+. Another population of K+ efflux channels was slowly activating, steeply rectifying, and highly sensitive to Na+. K+ efflux channels in roots and leaves showed different Ca2+ and Na+ sensitivities, suggesting that these organs may employ different strategies to withstand salinity. Our results suggest an additional mechanism of Ca2+ action on salt toxicity in plants: the amelioration of K+ loss from the cell by regulating (both directly and indirectly) K+ efflux channels.  相似文献   

12.
Quintero FJ  Blatt MR  Pardo JM 《FEBS letters》2000,471(2-3):224-228
Vacuolar compartmentation of Na(+) is an essential mechanism for salinity tolerance since it lowers cytosolic Na(+) levels while contributing to osmotic adjustment for cell turgor and expansion. The AtNHX1 protein of Arabidopsis thaliana substituted functionally for ScNHX1, the endosomal Na(+)/H(+) antiporter of yeast. Ion tolerance conferred by AtNHX1 and ScNHX1 correlated with ion uptake into an intracellular pool that was energetically dependent on the vacuolar (H(+))ATPase. AtNHX1 localized to vacuolar membrane fractions of yeast. Hence, both transporters share an evolutionarily conserved function in Na(+) compartmentation. AtNHX1 mRNA levels were upregulated by ABA and NaCl treatment in leaf but not in root tissue.  相似文献   

13.
Plant salinity tolerance is a physiologically complex trait, with numerous mechanisms contributing to it. In this work,we show that the ability of leaf mesophyll to retain Kt represents an important and essentially overlooked component of a salinity tolerance mechanism. The strong positive correlation between mesophyll Ktretention ability under saline conditions(quantified by the magnitude of Na Cl-induced Kt efflux from mesophyll) and the overall salinity tolerance(relative fresh weight and/or survival or damage under salinity stress) was found while screening 46 barley(Hordeum vulgare L.) genotypes contrasting in their salinity tolerance. Genotypes with intrinsically higher leaf Ktcontent under control conditions were found to possess better Ktretention ability under salinity and, hence, overall higher tolerance. Contrary to previous reports for barley roots, Ktretention in mesophyll was not associated with an increased Ht-pumping in tolerant varieties but instead correlated negatively with this trait. These findingsare explained by the fact that increased Htextrusion may be needed to charge balance the activity and provide the driving force for the high affinity HAK/KUP Kttransporters required to restore cytosolic Kthomeostasis in salt-sensitive genotypes.  相似文献   

14.
A wilty mutant (scabrous diminutive, sd) of Capsicum annuum L. hyperaccumulates Na+ in all tissues and has a lower K+ content in the roots. This has been shown to be due to a greater efflux of (86)Rb+ (K+) and influx of (22)Na+ in the mutant. In this study, the transporters responsible for these fluxes were investigated by applying patch clamp techniques to protoplasts derived from root cortical cells. Inwardly rectifying K+ currents were comparable in the two genotypes, but a characteristically bigger outward K+ current was observed in protoplasts from mutant roots, correlating with a bigger efflux of (86)Rb+ from mutant plants. Whole-cell currents due to the movement of Na+ have also been studied in both genotypes. The magnitude of the time-independent inward currents that conduct Na+ at hyperpolarizing voltages were comparable in both genotypes. However, microelectrode measurements of membrane potentials in cortical cells of roots in high Na+ conditions revealed that the membrane potentials of the root cells in the mutants were approximately 60 mV more negative than in wild-type root cells. Quantitatively, this hyperpolarization is calculated to be sufficient to account for the increased Na+ influx in the mutants.  相似文献   

15.
The ability of wheat to maintain a low sodium concentration ([Na(+)]) in leaves correlates with improved growth under saline conditions. This trait, termed Na(+) exclusion, contributes to the greater salt tolerance of bread wheat relative to durum wheat. To improve the salt tolerance of durum wheat, we explored natural diversity in shoot Na(+) exclusion within ancestral wheat germplasm. Previously, we showed that crossing of Nax2, a gene locus in the wheat relative Triticum monococcum into a commercial durum wheat (Triticum turgidum ssp. durum var. Tamaroi) reduced its leaf [Na(+)] (ref. 5). Here we show that a gene in the Nax2 locus, TmHKT1;5-A, encodes a Na(+)-selective transporter located on the plasma membrane of root cells surrounding xylem vessels, which is therefore ideally localized to withdraw Na(+) from the xylem and reduce transport of Na(+) to leaves. Field trials on saline soils demonstrate that the presence of TmHKT1;5-A significantly reduces leaf [Na(+)] and increases durum wheat grain yield by 25% compared to near-isogenic lines without the Nax2 locus.  相似文献   

16.
Cyclic nucleotide-gated channels (CNGCs) in the plasma membrane transport K+ and other cations; however, their roles in the response and adaptation of plants to environmental salinity are unclear. Growth, cation contents, salt tolerance and K+ fluxes were assessed in wild-type and two AtCNGC10 antisense lines (A2 and A3) of Arabidopsis thaliana (L.) Heynh. Compared with the wild-type, mature plants of both antisense lines had altered K+ and Na+ concentrations in shoots and were more sensitive to salt stress, as assessed by biomass and Chl fluorescence. The shoots of A2 and A3 plants contained higher Na+ concentrations and significantly higher Na+/K+ ratios compared with wild-type, whereas roots contained higher K+ concentrations and lower Na+/K+ ratios. Four-day-old seedlings of both antisense lines exposed to salt stress had smaller Na+/K+ ratios and longer roots than the wild-type. Under sudden salt treatment, the Na+ efflux was higher and the K+ efflux was smaller in the antisense lines, indicating that AtCNGC10 might function as a channel providing Na+ influx and K+ efflux at the root/soil interface. We conclude that the AtCNGC10 channel is involved in Na+ and K+ transport during cation uptake in roots and in long-distance transport, such as phloem loading and/or xylem retrieval. Mature A2 and A3 plants became more salt sensitive than wild-type plants because of impaired photosynthesis induced by a higher Na+ concentration in the leaves.  相似文献   

17.
跨膜离子转运蛋白与植物耐盐的分子生物学   总被引:2,自引:0,他引:2  
植物抵御盐害的主要方式是增加Na 的外排、减少Na 的吸入和Na 的区隔化,而Na 的跨膜运输主要由质膜和液泡膜上的离子转运蛋白完成。对质膜和液泡膜跨膜离子转运蛋白包括K /Na 离子转运蛋白,Na /H 逆向转运蛋白以及液泡膜H -PPase的分子生物学研究及应用进展进行了综述。  相似文献   

18.
Salinity poses a major threat for agriculture worldwide. Rice is one of the major crops where most of the high-yielding cultivars are highly sensitive to salinity. Several studies on the genetic variability across rice cultivars suggest that the activity and composition of root plasma membrane transporters could underlie the observed cultivar-specific salinity tolerance in rice. In the current study, it was found that the salt-tolerant cultivar Pokkali maintains a higher K+/Na+ ratio compared with the salt-sensitive IR20 in roots as well as in shoots. Using Na+ reporter dyes, IR20 root protoplasts showed a much faster Na+ accumulation than Pokkali protoplasts. Membrane potential measurements showed that root cells exposed to Na+ in IR20 depolarized considerably further than those of Pokkali. These results suggest that IR20 has a larger plasma membrane Na+ conductance. To assess whether this could be due to different ion channel properties, root protoplasts from both Pokkali and IR20 rice cultivars were patch-clamped. Voltage-dependent K+ inward rectifiers, K+ outward rectifiers, and voltage-independent, non-selective channels with unitary conductances of around 35, 40, and 10 pS, respectively, were identified. Only the non-selective channel showed significant Na+ permeability. Intriguingly, in both cultivars, the activity of the K+ inward rectifier was drastically down-regulated after plant growth in salt but gating, conductance, and activity of all channel types were very similar for the two cultivars.  相似文献   

19.
A new split-root system was established through grafting to study cotton response to non-uniform salinity. Each root half was treated with either uniform (100/100?mM) or non-uniform NaCl concentrations (0/200 and 50/150?mM). In contrast to uniform control, non-uniform salinity treatment improved plant growth and water use, with more water absorbed from the non- and low salinity side. Non-uniform treatments decreased Na(+) concentrations in leaves. The [Na(+)] in the '0' side roots of the 0/200 treatment was significantly higher than that in either side of the 0/0 control, but greatly decreased when the '0' side phloem was girdled, suggesting that the increased [Na(+)] in the '0' side roots was possibly due to transportation of foliar Na(+) to roots through phloem. Plants under non-uniform salinity extruded more Na(+) from the root than those under uniform salinity. Root Na(+) efflux in the low salinity side was greatly enhanced by the higher salinity side. NaCl-induced Na(+) efflux and H(+) influx were inhibited by amiloride and sodium orthovanadate, suggesting that root Na(+) extrusion was probably due to active Na(+)/H(+) antiport across the plasma membrane. Improved plant growth under non-uniform salinity was thus attributed to increased water use, reduced leaf Na(+) concentration, transport of excessive foliar Na(+) to the low salinity side, and enhanced Na(+) efflux from the low salinity root.  相似文献   

20.
Conservation of the salt overly sensitive pathway in rice   总被引:6,自引:0,他引:6       下载免费PDF全文
The salt tolerance of rice (Oryza sativa) correlates with the ability to exclude Na+ from the shoot and to maintain a low cellular Na+/K+ ratio. We have identified a rice plasma membrane Na+/H+ exchanger that, on the basis of genetic and biochemical criteria, is the functional homolog of the Arabidopsis (Arabidopsis thaliana) salt overly sensitive 1 (SOS1) protein. The rice transporter, denoted by OsSOS1, demonstrated a capacity for Na+/H+ exchange in plasma membrane vesicles of yeast (Saccharomyces cerevisiae) cells and reduced their net cellular Na+ content. The Arabidopsis protein kinase complex SOS2/SOS3, which positively controls the activity of AtSOS1, phosphorylated OsSOS1 and stimulated its activity in vivo and in vitro. Moreover, OsSOS1 suppressed the salt sensitivity of a sos1-1 mutant of Arabidopsis. These results represent the first molecular and biochemical characterization of a Na+ efflux protein from monocots. Putative rice homologs of the Arabidopsis protein kinase SOS2 and its Ca2+-dependent activator SOS3 were identified also. OsCIPK24 and OsCBL4 acted coordinately to activate OsSOS1 in yeast cells and they could be exchanged with their Arabidopsis counterpart to form heterologous protein kinase modules that activated both OsSOS1 and AtSOS1 and suppressed the salt sensitivity of sos2 and sos3 mutants of Arabidopsis. These results demonstrate that the SOS salt tolerance pathway operates in cereals and evidences a high degree of structural conservation among the SOS proteins from dicots and monocots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号