首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Introduction

Previously constructed Escherichia coli strains that produce 1-propanol use the native threonine pathway, or a heterologous citramalate pathway. However, based on the energy and cofactor requirements of each pathway, a combination of the two pathways produces synergistic effects that increase the theoretical maximum yield with a simultaneous unexplained increase in productivity.

Objective

Identification of key factors that contribute to synergistic effect leading to 1-propanol yield and productivity improvement in E. coli with native threonine pathway and heterologous citramalate pathway.

Method

A combination of snapshot metabolomic profiling and dynamic metabolic turnover analysis were used to identify system-wide perturbations that contribute to the productivity improvement.

Result and Conclusion

In the presence of both pathways, increased glucose consumption and elevated levels of glycolytic intermediates are attributed to an elevated phosphoenolpyruvate (PEP)/pyruvate ratio that is known to increase the function of the native phosphotransferase. Turnover analysis of nitrogen containing byproducts reveals that ammonia assimilation, required for the threonine pathway, is streamlined when provided with an NAD(P)H surplus in the presence of the citramalate pathway. Our study illustrates the application of metabolomics in identification of factors that alter cellular physiology for improvement of 1-propanol bioproduction.
  相似文献   

2.

Background

There has been a trend in increasing the phylogenetic scope of genome sequencing without finishing the sequence of the genome. Increasing numbers of genomes are being published in scaffold or contig form. Rearrangement algorithms, however, including gene order-based phylogenetic tools, require whole genome data on gene order or syntenic block order. How then can we use rearrangement algorithms to compare genomes available in scaffold form only? Can the comparative evidence predict the location of unsequenced genes?

Results

Our method involves optimally filling in genes missing from the scaffolds, while incorporating the augmented scaffolds directly into the rearrangement algorithms as if they were chromosomes. This is accomplished by an exact, polynomial-time algorithm. We then correct for the number of extra fusion/fission operations required to make scaffolds comparable to full assemblies. We model the relationship between the ratio of missing genes actually absent from the genome versus merely unsequenced ones, on one hand, and the increase of genomic distance after scaffold filling, on the other. We estimate the parameters of this model through simulations and by comparing the angiosperm genomes Ricinus communis and Vitis vinifera.

Conclusions

The algorithm solves the comparison of genomes with 18,300 genes, including 4500 missing from one genome, in less than a minute on a MacBook, putting virtually all genomes within range of the method.
  相似文献   

3.

Introduction

Everolimus selectively inhibits mammalian target of rapamycin complex 1 (mTORC1) and exerts an antineoplastic effect. Metabolic disturbance has emerged as a common and unique side effect of everolimus.

Objectives

We used targeted metabolomic analysis to investigate the effects of everolimus on the intracellular glycometabolic pathway.

Methods

Mouse skeletal muscle cells (C2C12) were exposed to everolimus for 48 h, and changes in intracellular metabolites were determined by capillary electrophoresis time-of-flight mass spectrometry. mRNA abundance, protein expression and activity were measured for enzymes involved in glycometabolism and related pathways.

Results

Both extracellular and intracellular glucose levels increased with exposure to everolimus. Most intracellular glycometabolites were decreased by everolimus, including those involved in glycolysis and the pentose phosphate pathway, whereas no changes were observed in the tricarboxylic acid cycle. Everolimus suppressed mRNA expression of enzymes related to glycolysis, downstream of mTOR signaling enzymes and adenosine 5′-monophosphate protein kinases. The activity of key enzymes involved in glycolysis and the pentose phosphate pathway were decreased by everolimus. These results show that everolimus impairs glucose utilization in intracellular metabolism.

Conclusions

The present metabolomic analysis indicates that everolimus impairs glucose metabolism in muscle cells by lowering the activities of glycolysis and the pentose phosphate pathway.
  相似文献   

4.

Objectives

To achieve biosynthesis of caffeoylmalic acid from glucose in engineered Escherichia coli.

Results

We constructed the biosynthetic pathway of caffeoylmalic acid in E. coli by co-expression of heterologous genes RgTAL, HpaBC, At4CL2 and HCT2. To enhance the production of caffeoylmalic acid, we optimized the tyrosine metabolic pathway of E. coli to increase the supply of the substrate caffeic acid. Consequently, an E. coliE. coli co-culture system was used for the efficient production of caffeoylmalic acid. The final titer of caffeoylmalic acid reached 570.1 mg/L.

Conclusions

Microbial production of caffeoylmalic acid using glucose has application potential. In addition, microbial co-culture is an efficient tool for producing caffeic acid esters.
  相似文献   

5.

Objectives

To find new metabolic engineering strategies to improve the yield of acetone in Escherichia coli.

Results

Results of flux balance analysis from a modified Escherichia coli genome-scale metabolic network suggested that the introduction of a non-oxidative glycolysis (NOG) pathway would improve the theoretical acetone yield from 1 to 1.5 mol acetone/mol glucose. By inserting the fxpk gene encoding phosphoketolase from Bifidobacterium adolescentis into the genome, we constructed a NOG pathway in E.coli. The resulting strain produced 47 mM acetone from glucose under aerobic conditions in shake-flasks. The yield of acetone was improved from 0.38 to 0.47 mol acetone/mol glucose which is a significant over the parent strain.

Conclusions

Guided by computational analysis of metabolic networks, we introduced a NOG pathway into E. coli and increased the yield of acetone, which demonstrates the importance of modeling analysis for the novel metabolic engineering strategies.
  相似文献   

6.

Introduction

Hypoxia commonly occurs in cancers and is highly related with the occurrence, development and metastasis of cancer. Treatment of triple negative breast cancer remains challenge. Knowledge about the metabolic status of triple negative breast cancer cell lines in hypoxia is valuable for the understanding of molecular mechanisms of this tumor subtype to develop effective therapeutics.

Objectives

Comprehensively characterize the metabolic profiles of triple negative breast cancer cell line MDA-MB-231 in normoxia and hypoxia and the pathways involved in metabolic changes in hypoxia.

Methods

Differences in metabolic profiles affected pathways of MDA-MB-231 cells in normoxia and hypoxia were characterized using GC–MS based untargeted and stable isotope assisted metabolomic techniques.

Results

Thirty-three metabolites were significantly changed in hypoxia and nine pathways were involved. Hypoxia increased glycolysis, inhibited TCA cycle, pentose phosphate pathway and pyruvate carboxylation, while increased glutaminolysis in MDA-MB-231 cells.

Conclusion

The current results provide metabolic differences of MDA-MB-231 cells in normoxia and hypoxia conditions as well as the involved metabolic pathways, demonstrating the power of combined use of untargeted and stable isotope-assisted metabolomic methods in comprehensive metabolomic analysis.
  相似文献   

7.

Background

Bacterial genomes develop new mechanisms to tide them over the imposing conditions they encounter during the course of their evolution. Acquisition of new genes by lateral gene transfer may be one of the dominant ways of adaptation in bacterial genome evolution. Lateral gene transfer provides the bacterial genome with a new set of genes that help it to explore and adapt to new ecological niches.

Methods

A maximum likelihood analysis was done on the five sequenced corynebacterial genomes to model the rates of gene insertions/deletions at various depths of the phylogeny.

Results

The study shows that most of the laterally acquired genes are transient and the inferred rates of gene movement are higher on the external branches of the phylogeny and decrease as the phylogenetic depth increases. The newly acquired genes are under relaxed selection and evolve faster than their older counterparts. Analysis of some of the functionally characterised LGTs in each species has indicated that they may have a possible adaptive role.

Conclusion

The five Corynebacterial genomes sequenced to date have evolved by acquiring between 8 – 14% of their genomes by LGT and some of these genes may have a role in adaptation.
  相似文献   

8.

Background

Integrative analysis on multi-omics data has gained much attention recently. To investigate the interactive effect of gene expression and DNA methylation on cancer, we propose a directed random walk-based approach on an integrated gene-gene graph that is guided by pathway information.

Methods

Our approach first extracts a single pathway profile matrix out of the gene expression and DNA methylation data by performing the random walk over the integrated graph. We then apply a denoising autoencoder to the pathway profile to further identify important pathway features and genes. The extracted features are validated in the survival prediction task for breast cancer patients.

Results

The results show that the proposed method substantially improves the survival prediction performance compared to that of other pathway-based prediction methods, revealing that the combined effect of gene expression and methylation data is well reflected in the integrated gene-gene graph combined with pathway information. Furthermore, we show that our joint analysis on the methylation features and gene expression profile identifies cancer-specific pathways with genes related to breast cancer.

Conclusions

In this study, we proposed a DRW-based method on an integrated gene-gene graph with expression and methylation profiles in order to utilize the interactions between them. The results showed that the constructed integrated gene-gene graph can successfully reflect the combined effect of methylation features on gene expression profiles. We also found that the selected features by DA can effectively extract topologically important pathways and genes specifically related to breast cancer.
  相似文献   

9.

Background

Identification of common genes associated with comorbid diseases can be critical in understanding their pathobiological mechanism. This work presents a novel method to predict missing common genes associated with a disease pair. Searching for missing common genes is formulated as an optimization problem to minimize network based module separation from two subgraphs produced by mapping genes associated with disease onto the interactome.

Results

Using cross validation on more than 600 disease pairs, our method achieves significantly higher average receiver operating characteristic ROC Score of 0.95 compared to a baseline ROC score 0.60 using randomized data.

Conclusion

Missing common genes prediction is aimed to complete gene set associated with comorbid disease for better understanding of biological intervention. It will also be useful for gene targeted therapeutics related to comorbid diseases. This method can be further considered for prediction of missing edges to complete the subgraph associated with disease pair.
  相似文献   

10.

Introduction

It is difficult to elucidate the metabolic and regulatory factors causing lipidome perturbations.

Objectives

This work simplifies this process.

Methods

A method has been developed to query an online holistic lipid metabolic network (of 7923 metabolites) to extract the pathways that connect the input list of lipids.

Results

The output enables pathway visualisation and the querying of other databases to identify potential regulators. When used to a study a plasma lipidome dataset of polycystic ovary syndrome, 14 enzymes were identified, of which 3 are linked to ELAVL1—an mRNA stabiliser.

Conclusion

This method provides a simplified approach to identifying potential regulators causing lipid-profile perturbations.
  相似文献   

11.

Objectives

To characterize biomarkers that underlie osteosarcoma (OS) metastasis based on an ego-network.

Results

From the microarray data, we obtained 13,326 genes. By combining PPI data and microarray data, 10,520 shared genes were found and constructed into ego-networks. 17 significant ego-networks were identified with p < 0.05. In the pathway enrichment analysis, seven ego-networks were identified with the most significant pathway.

Conclusions

These significant ego-modules were potential biomarkers that reveal the potential mechanisms in OS metastasis, which may contribute to understanding cancer prognoses and providing new perspectives in the treatment of cancer.
  相似文献   

12.

Background

Genome evolution in intracellular microbial symbionts is characterized by gene loss, generating some of the smallest and most gene-poor genomes known. As a result of gene loss these genomes commonly contain metabolic pathways that are fragmented relative to their free-living relatives. The evolutionary retention of fragmented metabolic pathways in the gene-poor genomes of endosymbionts suggests that they are functional. However, it is not always clear how they maintain functionality. To date, the fragmented metabolic pathways of endosymbionts have been shown to maintain functionality through complementation by host genes, complementation by genes of another endosymbiont and complementation by genes in host genomes that have been horizontally acquired from a microbial source that is not the endosymbiont. Here, we demonstrate a fourth mechanism.

Results

We investigate the evolutionary retention of a fragmented pathway for the essential nutrient pantothenate (vitamin B5) in the pea aphid, Acyrthosiphon pisum endosymbiosis with Buchnera aphidicola. Using quantitative analysis of gene expression we present evidence for complementation of the Buchnera pantothenate biosynthesis pathway by host genes. Further, using complementation assays in an Escherichia coli mutant we demonstrate functional replacement of a pantothenate biosynthesis enzyme, 2-dehydropantoate 2-reductase (E.C. 1.1.1.169), by an endosymbiont gene, ilvC, encoding a substrate ambiguous enzyme.

Conclusions

Earlier studies have speculated that missing enzyme steps in fragmented endosymbiont metabolic pathways are completed by adaptable endosymbiont enzymes from other pathways. Here, we experimentally demonstrate completion of a fragmented endosymbiont vitamin biosynthesis pathway by recruitment of a substrate ambiguous enzyme from another pathway. In addition, this work extends host/symbiont metabolic collaboration in the aphid/Buchnera symbiosis from amino acid metabolism to include vitamin biosynthesis.
  相似文献   

13.

Objectives

To investigate the effect of endogenous Cas9 on genome editing efficiency in transgenic zebrafish.

Results

Here we have constructed a transgenic zebrafish strain that can be screened by pigment deficiency. Compared with the traditional CRISPR injection method, the transgenic zebrafish can improve the efficiency of genome editing significantly. At the same time, we first observed that the phenotype of vertebral malformation in early embryonic development of zebrafish after ZFERV knockout.

Conclusions

The transgenic zebrafish with expressed Cas9, is more efficient in genome editing. And the results of ZFERV knockout indicated that ERV may affect the vertebral development by Notch1/Delta D signal pathway.
  相似文献   

14.
15.
16.

Background

Thyroid cancer is the most common endocrine tumor with a steady increase in incidence. It is classified into multiple histopathological subtypes with potentially distinct molecular mechanisms. Identifying the most relevant genes and biological pathways reported in the thyroid cancer literature is vital for understanding of the disease and developing targeted therapeutics.

Results

We developed a large-scale text mining system to generate a molecular profiling of thyroid cancer subtypes. The system first uses a subtype classification method for the thyroid cancer literature, which employs a scoring scheme to assign different subtypes to articles. We evaluated the classification method on a gold standard derived from the PubMed Supplementary Concept annotations, achieving a micro-average F1-score of 85.9% for primary subtypes. We then used the subtype classification results to extract genes and pathways associated with different thyroid cancer subtypes and successfully unveiled important genes and pathways, including some instances that are missing from current manually annotated databases or most recent review articles.

Conclusions

Identification of key genes and pathways plays a central role in understanding the molecular biology of thyroid cancer. An integration of subtype context can allow prioritized screening for diagnostic biomarkers and novel molecular targeted therapeutics. Source code used for this study is made freely available online at https://github.com/chengkun-wu/GenesThyCan.
  相似文献   

17.

Background

Clinical statement alone is not enough to predict the progression of disease. Instead, the gene expression profiles have been widely used to forecast clinical outcomes. Many genes related to survival have been identified, and recently miRNA expression signatures predicting patient survival have been also investigated for several cancers. However, miRNAs and their target genes associated with clinical outcomes have remained largely unexplored.

Methods

Here, we demonstrate a survival analysis based on the regulatory relationships of miRNAs and their target genes. The patient survivals for the two major cancers, ovarian cancer and glioblastoma multiforme (GBM), are investigated through the integrated analysis of miRNA-mRNA interaction pairs.

Results

We found that there is a larger survival difference between two patient groups with an inversely correlated expression profile of miRNA and mRNA. It supports the idea that signatures of miRNAs and their targets related to cancer progression can be detected via this approach.

Conclusions

This integrated analysis can help to discover coordinated expression signatures of miRNAs and their target mRNAs that can be employed for therapeutics in human cancers.
  相似文献   

18.

Objectives

Involvement of the outer membrane protein C (OmpC) of Escherichia coli in neurodegeneration was investigated using a mouse model.

Results

OmpC formed protease-resistant fibres that exhibited the diagnostic features of an amyloid. The spectral shift in the Congo Red and the thioflavin T assays produced features similar to neurotoxic peptides. Intramuscular administration of OmpC in mice resulted in spongiform neurodegeneration of the brain through calcium-dependent apoptosis and also showed upregulation of apoptosis related genes. Immunolocalization of OmpC in brain demonstrated the direct involvement of the porin in neurodegeneration and formation of spongiform encephalopathy.

Conclusion

We have demonstrated the ability of OmpC of E. coli to induce neurodegeneration in mice.
  相似文献   

19.

Background

Hutchinson-Gilford progeria syndrome (HGPS) is a devastating premature aging disorder. It arises from a single point mutation in the LMNA gene. This mutation stimulates an aberrant splicing event and produces progerin, an isoform of the lamin A protein. Accumulation of progerin disrupts numerous physiological pathways and induces defects in nuclear architecture, gene expression, histone modification, cell cycle regulation, mitochondrial functionality, genome integrity and much more.

Objective

Among these phenotypes, genomic instability is tightly associated with physiological aging and considered a main contributor to the premature aging phenotypes. However, our understanding of the underlying molecular mechanisms of progerin-caused genome instability is far from clear.

Results and Conclusion

In this review, we summarize some of the recent findings and discuss potential mechanisms through which, progerin affects DNA damage repair and leads to genome integrity.
  相似文献   

20.

Introduction

A common problem in metabolomics data analysis is the existence of a substantial number of missing values, which can complicate, bias, or even prevent certain downstream analyses. One of the most widely-used solutions to this problem is imputation of missing values using a k-nearest neighbors (kNN) algorithm to estimate missing metabolite abundances. kNN implicitly assumes that missing values are uniformly distributed at random in the dataset, but this is typically not true in metabolomics, where many values are missing because they are below the limit of detection of the analytical instrumentation.

Objectives

Here, we explore the impact of nonuniformly distributed missing values (missing not at random, or MNAR) on imputation performance. We present a new model for generating synthetic missing data and a new algorithm, No-Skip kNN (NS-kNN), that accounts for MNAR values to provide more accurate imputations.

Methods

We compare the imputation errors of the original kNN algorithm using two distance metrics, NS-kNN, and a recently developed algorithm KNN-TN, when applied to multiple experimental datasets with different types and levels of missing data.

Results

Our results show that NS-kNN typically outperforms kNN when at least 20–30% of missing values in a dataset are MNAR. NS-kNN also has lower imputation errors than KNN-TN on realistic datasets when at least 50% of missing values are MNAR.

Conclusion

Accounting for the nonuniform distribution of missing values in metabolomics data can significantly improve the results of imputation algorithms. The NS-kNN method imputes missing metabolomics data more accurately than existing kNN-based approaches when used on realistic datasets.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号