首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
All epidemiological studies conclude that without prompt, concerted and well-designed prevention programs, the increasing cost related to osteoporotic fractures will become an unbearable burden for the community within the next fifteen years. However, the most effective way of setting up such preventive strategies is not yet unequivocally defined. Low bone mass and microarchitectural damage of bone tissue may account for a large part of the epidemiology of vertebral fractures. Extraskeletal determinants, including low muscle strength, poor balance and gait, all resulting in an increased propensity to fall, also play a major role in the occurrence of hip fracture. Depending on the localization of the fractures, the relative importance of skeletal and extraskeletal risk factors can significantly differ. For prevention of vertebral fractures, drugs affecting bone mass and skeletal architecture may provide a substantial benefit while hip fracture prevention will be more successfully targeted by multi-faceted strategies concentrating not only on the skeletal dimension of the fracture but also aiming, either pharmacologically or through multi-intervention programs, at a reduction in the incidence and in the consequences of falls in the elderly.  相似文献   

2.
In recent years there has been a significant increase in both acute and chronic toxicity associated with the more successful but now highly intensive chemotherapy (CT) regimens used to treat childhood cancers. The incidence of childhood cancers coincides with periods of rapid skeletal development. Consequently, short stature and osteoporosis are important long-term effects in adult survivors. Clinical data indicate that the effects of CT, including glucocorticoids, on final height are due to direct effects of these drugs on the skeleton. The multiple modes of action of CT drugs suggest a complex and diverse influence on chondrocytes, extracellular matrix and bone cells. However, only limited data demonstrate these direct effects on the proliferative capacity of growth plate chondrocytes and on key steps of endochondral ossification, the multistep process that determines rate and extent of long bone growth. Endochondral ossification requires coordinated maturation, proliferation and differentiation of growth plate chondrocytes leading to hypertrophic cells which eventually undergo apoptosis to leave a cartilaginous scaffold that is mineralized prior to the laying down of new bone. Disruption of the physiological cellular activity of growth plate chondrocytes and/or bone cells result in skeletal growth disturbances. Thus, CT drugs which disrupt normal cell division may manifest their effects on the growth plate as either a reduction in cell number and/or the loss of functional integrity of extracellular matrix. Histological and cell kinetic studies, using in vivo and in vitro models of long bone growth, are essential to increase our understanding of the cellular mechanisms involved and to finally determine how the individual growth potential might be maintained during treatment for childhood cancers.  相似文献   

3.
The postnatal skeleton undergoes growth, modeling, and remodeling. The human skeleton is a composite of diverse tissue types, including bone, cartilage, fat, fibroblasts, nerves, blood vessels, and hematopoietic cells. Fracture nonunion and bone defects are among the most challenging clinical problems in orthopedic trauma. The incidence of nonunion or bone defects following fractures is increasing. Stem and progenitor cells mediate homeostasis and regeneration in postnatal tissue, including bone tissue. As multipotent stem cells, skeletal stem cells (SSCs) have a strong effect on the growth, differentiation, and repair of bone regeneration. In recent years, a number of important studies have characterized the hierarchy, differential potential, and bone formation of SSCs. Here, we describe studies on and applications of SSCs and/or mesenchymal stem cells for bone regeneration.  相似文献   

4.
5.
Chemotherapy-induced bone growth arrest and osteoporosis are significant problems in paediatric cancer patients, and yet how chemotherapy affects bone growth remains unclear. This study characterised development and resolution of damage caused by acute chemotherapy with antimetabolite 5-fluorouracil (5-FU) in young rats in the growth plate cartilage and metaphyseal bone, two important tissues responsible for bone lengthening. In metaphysis, 5-FU induced apoptosis among osteoblasts and preosteoblasts on days 1-2. In growth plate, chondrocyte apoptosis appeared on days 5-10. Interestingly, Bax was induced prior to apoptosis and Bcl-2 was upregulated during recovery. 5-FU also suppressed cell proliferation on days 1-2. While proliferation returned to normal by day 3 in metaphysis, it recovered partially on day 3, overshot on days 5-7 and normalised by day 10 in growth plate. Histologically, growth plate heights decreased by days 4-5 and returned normal by day 10. In metaphysis, primary spongiosa height was also reduced, mirroring changes in growth plate thickness. In metaphyseal secondary spongiosa, a reduced bone volume was observed on days 7-10 as there were fewer but more separated trabeculae. Starting from day 4, expression of some cartilage/bone matrix proteins and growth factors (TGF-beta1 and IGF-I) was increased. By day 14, cellular activity, histological structure and gene expression had returned normal in both tissues. Therefore, 5-FU chemotherapy affects bone growth directly by inducing apoptosis and inhibiting proliferation at growth plate cartilage and metaphyseal bone; after the acute damage, bone growth mechanism can recover, which is associated with upregulated expression of matrix proteins and growth factors.  相似文献   

6.
The underlying pathophysiology for bone growth defects in paediatric cancer patients receiving high dose methotrexate chemotherapy remains unclear and currently there are no standardized preventative treatments for patients and survivors. Using a model in young rats, we investigated damaging effects of long-term treatment with methotrexate on growth plate and metaphyseal bone, and the potential protective effects of antidote folinic acid. This study demonstrated that chronic folinic acid supplementation can prevent methotrexate-induced chondrocyte apoptosis and preserve chondrocyte columnar arrangement and number in the growth plate. In the metaphysis, folinic acid supplementation can preserve primary spongiosa heights and secondary spongiosa trabecular volume by preventing osteoblasts from undergoing apoptosis and suppressing methotrexate-induced marrow adiposity and osteoclast formation. Systemically, plasma of folinic acid supplemented rats, in comparison to plasma from rats treated with MTX alone, contained a significantly lower level of IL-1β and suppressed osteoclast formation in vitro in normal bone marrow cells. The importance of IL-1β in supporting plasma-induced osteoclast formation was confirmed as the presence of an anti-IL-1β neutralizing antibody attenuated the ability of the plasma (from MTX-treated rats) in inducing osteoclast formation. Findings from this study suggest that folinic acid supplementation during chronic methotrexate treatment can alleviate growth plate and metaphyseal damages and therefore may be potentially useful in paediatric patients who are at risk of skeletal growth suppression due to chronic methotrexate chemotherapy.  相似文献   

7.
8.
Osteoporosis, or bone loss, is a progressive, systemic skeletal disease that affects millions of people worldwide. Osteoporosis is generally age related, and it is underdiagnosed because it remains asymptomatic for several years until the development of fractures that confine daily life activities, particularly in elderly people. Most patients with osteoporotic fractures become bedridden and are in a life-threatening state. The consequences of fracture can be devastating, leading to substantial morbidity and mortality of the patients. The normal physiologic process of bone remodeling involves a balance between bone resorption and bone formation during early adulthood. In osteoporosis, this process becomes imbalanced, resulting in gradual losses of bone mass and density due to enhanced bone resorption and/or inadequate bone formation. Several growth factors underlying age-related osteoporosis and their signaling pathways have been identified, such as osteoprotegerin (OPG)/receptor activator of nuclear factor B (RANK)/RANK ligand (RANKL), bone morphogenetic protein (BMP), wingless-type MMTV integration site family (Wnt) proteins and signaling through parathyroid hormone receptors. In addition, the pathogenesis of osteoporosis has been connected to genetics. The current treatment of osteoporosis predominantly consists of antiresorptive and anabolic agents; however, the serious adverse effects of using these drugs are of concern. Cell-based replacement therapy via the use of mesenchymal stem cells (MSCs) may become one of the strategies for osteoporosis treatment in the future.  相似文献   

9.
Impaired bone growth and mineralization, and osteonecrosis are significant and common long-term sequelae of chemotherapy for childhood acute lymphoblastic leukemia (ALL). Here we have evaluated the relationship between linear bone growth during chemotherapy for ALL and bone derived C-type Natriuretic Peptide (CNP). CNP is known to be critical to normal endochondral bone growth in both rodents and humans, and plasma concentration of the amino terminal pro CNP (NTproCNP) is strongly correlated with concurrent height velocity in children. Plasma NTproCNP and CNP were measured by radio-immunoassay in 12 children aged 2-9 years during induction and maintenance chemotherapy for children with ALL. Height velocity was calculated from stadiometer readings at intervals of 3-12 months and related to plasma NTproCNP during each growth interval. Plasma NTproCNP was markedly suppressed in all subjects during induction chemotherapy. Brief periods of NTproCNP decline and rapid rebound during maintenance treatment coincided with the use of dexamethasone but not with other chemotherapeutics. Height velocity was markedly reduced during ALL induction but unaffected in maintenance phase, and these changes in growth were strongly correlated with plasma NTproCNP concentration. Plasma NTproCNP has potential use as a biomarker of glucocorticoid-induced bone toxicity.  相似文献   

10.
Postmenopausal osteoporosis (PMOP) is a prevalent skeletal disorder associated with menopause-related estrogen withdrawal. PMOP is characterized by low bone mass, deterioration of the skeletal microarchitecture, and subsequent increased susceptibility to fragility fractures, thus contributing to disability and mortality. Accumulating evidence indicates that abnormal expansion of marrow adipose tissue (MAT) plays a crucial role in the onset and progression of PMOP, in part because both bone marrow adipocytes and osteoblasts share a common ancestor lineage. The cohabitation of MAT adipocytes, mesenchymal stromal cells, hematopoietic cells, osteoblasts and osteoclasts in the bone marrow creates a microenvironment that permits adipocytes to act directly on other cell types in the marrow. Furthermore, MAT, which is recognized as an endocrine organ, regulates bone remodeling through the secretion of adipokines and cytokines. Although an enhanced MAT volume is linked to low bone mass and fractures in PMOP, the detailed interactions between MAT and bone metabolism remain largely unknown. In this review, we examine the possible mechanisms of MAT expansion under estrogen withdrawal and further summarize emerging findings regarding the pathological roles of MAT in bone remodeling. We also discuss the current therapies targeting MAT in osteoporosis. A comprehensive understanding of the relationship between MAT expansion and bone metabolism in estrogen deficiency conditions will provide new insights into potential therapeutic targets for PMOP.  相似文献   

11.
Altered fracture repair in the absence of MMP9   总被引:13,自引:0,他引:13  
The regeneration of adult skeletal tissues requires the timely recruitment of skeletal progenitor cells to an injury site, the differentiation of these cells into bone or cartilage, and the re-establishment of a vascular network to maintain cell viability. Disturbances in any of these cellular events can have a detrimental effect on the process of skeletal repair. Although fracture repair has been compared with fetal skeletal development, the extent to which the reparative process actually recapitulates the fetal program remains uncertain. Here, we provide the first genetic evidence that matrix metalloproteinase 9 (MMP9) regulates crucial events during adult fracture repair. We demonstrate that MMP9 mediates vascular invasion of the hypertrophic cartilage callus, and that Mmp9(-/-) mice have non-unions and delayed unions of their fractures caused by persistent cartilage at the injury site. This MMP9- dependent delay in skeletal healing is not due to a lack of vascular endothelial growth factor (VEGF) or VEGF receptor expression, but may instead be due to the lack of VEGF bioavailability in the mutant because recombinant VEGF can rescue Mmp9(-/-) non-unions. We also found that Mmp9(-/-) mice generate a large cartilage callus even when fractured bones are stabilized, which implicates MMP9 in the regulation of chondrogenic and osteogenic cell differentiation during early stages of repair. In conclusion, the resemblance between Mmp9(-/-) fetal skeletal defects and those that emerge during Mmp9(-/-) adult repair offer the strongest evidence to date that similar mechanisms are employed to achieve bone formation, regardless of age.  相似文献   

12.
In growing children, lumbar and femoral areal bone mineral density (aBMD), as measured by dual-energy X-ray absorptiometry (DXA), is influenced by skeletal growth and bone size. Correction of lumbar bone mineral density (BMD) for bone volume (volumetric BMD [vBMD]), by the use of mathematical extrapolations, reduces the confounding effect of bone size, but vBMD remains dependent on age and bone size during growth. Femoral (neck and mid-shaft) vBMD, assessed by DXA, is independent of age prior to puberty, but a slight increase occurs in late puberty and after menarche. Femoral (mid-shaft) cortical bone density and radial cortical and trabecular bone densities, assessed by quantitative computed tomography (QCT), show no peak during childhood or adolescence. Bone strength index, calculated by peripheral QCT, increases with age and correlates with handgrip strength, bone cross-sectional area and cortical area. Puberty is one of the main factors that influences lumbar bone mineral content and aBMD accumulation, but a high incidence of fractures occurs during this period of life, which may be associated with a reduced aBMD.  相似文献   

13.
Chemotherapy often induces bone growth defects in pediatric cancer patients; yet the underlying cellular mechanisms remain unclear and currently no preventative treatments are available. Using an acute chemotherapy model in young rats with the commonly used antimetabolite methotrexate (MTX), this study investigated damaging effects of five once-daily MTX injections and potential protective effects of supplementary treatment with antidote folinic acid (FA) on cellular activities in the tibial growth plate, metaphysis, and bone marrow. MTX suppressed proliferation and induced apoptosis of chondrocytes, and reduced collagen-II expression and growth plate thickness. It reduced production of primary spongiosa bone, volume of secondary spongiosa bone, and proliferation of metaphyseal osteoblasts, preosteoblasts and bone marrow stromal cells, with the cellular activities being most severely damaged on day 9 and returning to or towards near normal levels by day 14. On the other hand, proliferation of marrow pericytes was increased early after MTX treatment and during repair. FA supplementation significantly suppressed chondrocyte apoptosis, preserved chondrocyte proliferation and expression of collagen-II, and attenuated damaging effects on production of calcified cartilage and primary bone. The supplementation also significantly reduced MTX effects on proliferation of metaphyseal osteoblastic cells and of bone marrow stromal cells, and enhanced pericyte proliferation. These observations suggest that FA supplementation effectively attenuates MTX damage on cellular activities in producing calcified cartilage and primary trabecular bone and on pools of osteoblastic cells and marrow stromal cells, and that it enhances proliferation of mesenchymal progenitor cells during bone/bone marrow recovery.  相似文献   

14.
Fracture healing is a specialized post-natal repair process that recapitulates aspects of embryological skeletal development. While many of the molecular mechanisms that control cellular differentiation and growth during embryogenesis recur during fracture healing, these processes take place in a post-natal environment that is unique and distinct from those which exist during embryogenesis. This Prospect Article will highlight a number of central biological processes that are believed to be crucial in the embryonic differentiation and growth of skeletal tissues and review the functional role of these processes during fracture healing. Specific aspects of fracture healing that will be considered in relation to embryological development are: (1) the anatomic structure of the fracture callus as it evolves during healing; (2) the origins of stem cells and morphogenetic signals that facilitate the repair process; (3) the role of the biomechanical environment in controlling cellular differentiation during repair; (4) the role of three key groups of soluble factors, pro-inflammatory cytokines, the TGF-beta superfamily, and angiogenic factors, during repair; and (5) the relationship of the genetic components that control bone mass and remodeling to the mechanisms that control skeletal tissue repair in response to fracture.  相似文献   

15.
Optimizing nutrition during development may provide effective prevention strategies to protect against osteoporosis during later life. Because the mouse model is commonly used to test nutritional interventions on bone health, the overall objective of this study was to determine how bone develops during the first 4 months of life by assessing bone mass (bone mineral content (BMC) and bone mineral density (BMD)) and biomechanical strength properties such as peak load in male and female CD-1 mice. Bone outcomes were assessed at 1 month intervals from 1 to 4 months of age. Femur and spine BMC and BMD at 3 months were similar to 4 months, indicating that the accumulation of bone mass occurs primarily during the first 3 months of life. In contrast, the timing of changes in peak load, a measure of bone strength, varied by skeletal site. Regression analyses demonstrated that femur BMC is a significant predictor of femur peak load at the femur midpoint and neck. The study findings suggest that nutritional interventions aimed at optimizing peak bone mass to prevent osteoporosis may be most effective during pubertal growth.  相似文献   

16.
Angiogenesis and bone formation are coupled during skeletal development and fracture healing. This relationship, although known for some time, has not been properly explored. Advances in the discovery of how angiogenesis is regulated in physiological processes like embryogenesis, endometrial regeneration and wound healing or in pathologies such as cancer have provided a deeper understanding of how angiogenic factors may interact with bone cells to improve bone formation and bone regeneration. The lack of oxygen (hypoxia) and the subsequent generation of angiogenic factors have been shown to be critical in the development of a regular skeleton and achieving successful bone regeneration and fracture healing. Given that vascular status is important for a proper bone homeostasis, defining the roles of osteoblasts, osteoclasts, endothelial cells and angiogenic factors and their interactions in bone is a key issue for the development of new strategies to manage bone pathologies and nonfused fractures.  相似文献   

17.
Growth hormone (GH) and insulin-like growth factor-I have major effects on growth plate chondrocytes and all bone cells. Untreated childhood-onset GH deficiency (GHD) markedly impairs linear growth as well as three-dimensional bone size. Adult peak bone mass is therefore about 50% that of adults with normal height. This is mainly an effect on bone volume, whereas true bone mineral density (BMD; g/cm(3)) is virtually normal, as demonstrated in a large cohort of untreated Russian adults with childhood-onset GHD. The prevalence of fractures in these untreated childhood-onset GHD adults was, however, markedly and significantly increased in comparison with normal Russian adults. This clearly indicates that bone mass and bone size matter more than true bone density. Adequate treatment with GH can largely correct bone size and in several studies also bone mass, but it usually requires more than 5 years of continuous treatment. Adult-onset GHD decreases bone turnover and results in a mild deficit, generally between -0.5 and -1.0 z-score, in bone mineral content and BMD of the lumbar spine, radius and femoral neck. Cross-sectional surveys and the KIMS data suggest an increased incidence of fractures. GH replacement therapy increases bone turnover. The three controlled studies with follow-up periods of 18 and 24 months demonstrated a modest increase in BMD of the lumbar spine and femoral neck in male adults with adult-onset GHD, whereas no significant changes in BMD were observed in women. GHD, whether childhood- or adult-onset, impairs bone mass and strength. Appropriate substitution therapy can largely correct these deficiencies if given over a prolonged period. GH therapy for other bone disorders not associated with primary GHD needs further study but may well be beneficial because of its positive effects on the bone remodelling cycle.  相似文献   

18.
Growth hormone (GH) has a positive impact on muscle mass, growth and bone formation. It is known to interact with the bone-forming unit, with well-documented increases in markers of bone formation and bone resorption within weeks of the start of GH therapy. These changes relate significantly to short-term growth rate, but it is not evident that they predict long-term response to GH therapy. The consequences of GH deficiency (GHD) and GH replacement therapy on bone mineral density (BMD) have been difficult to interpret in children because of the dependency of areal BMD on height and weight. Some studies have tried to overcome this problem by calculating volumetric BMD, but results are conflicting. The attainment of a normal peak bone mass in an individual is considered important for the future prevention of osteoporosis. From the limited data available, it appears difficult to normalize bone mass totally in GH-deficient individuals, despite GH treatment for long periods. Studies to date examining the interaction between GH and bone have included only small numbers of individuals, making it difficult to interpret the study findings. It is hoped that these issues can be clarified in future research by the direct measurement of bone density (using quantitative computer tomography). Mineralization is only one facet of bone strength, however; other important components (e.g. bone structure and geometry) should be addressed in future paediatric studies. Future studies could also address the importance of the degree of GHD in childhood; how GH dose and insulin-like growth factor-I levels achieved during therapy relate to the final outcome; whether or not the continuation of GH therapy after the attainment of final height may further enhance bone mass; whether the timing and dose of other treatments (e.g. sex hormone replacement therapy) are critical to the outcome; and whether GHD in childhood is associated with an increased risk of fracture.  相似文献   

19.
《Endocrine practice》2007,13(5):513-520
ObjectiveTo review current consensus and controversy surrounding the diagnosis and treatment of osteoporosis in childhood and adolescence.MethodsThe medical literature was reviewed with emphasis on the importance of early skeletal health, risk factors for bone fragility, and the diagnosis and management of children at risk for osteoporosis.ResultsChildhood and adolescence are critical periods for optimizing bone growth and mineral accrual. Bone strength is determined by bone size, geometry, quality, and mass—variables that are influenced by genetic factors, activity, nutrition, and hormones. For children with genetic skeletal disorders or chronic disease, bone growth and mineral accrual may be compromised, increasing the lifetime risk of osteoporosis. The goal for the clinician is to identify children at greatest risk for future fragility fracture. Bone densitometry and turnover markers are challenging to interpret in children. Prevention and treatment of bone fragility in children are less well established than in adults. Optimizing nutrition and activity may not restore bone health, but the drug armamentarium is limited. Sex steroid replacement has not proven effective in restoring bone mass in patients with anorexia nervosa or exercise-associated amenorrhea. Bisphosphonates can increase bone mass and may reduce bone pain and fractures, most convincingly in patients with osteogenesis imperfecta. Further studies are needed to establish the safety, efficacy, and optimal drug, duration, and dosage in pediatric patients.ConclusionBone health during the first 2 decades contributes to the lifetime risk of osteoporosis. Further research is needed to develop evidence-based recommendations for the diagnosis and treatment of osteoporosis in childhood. (Endocr Pract. 2007;13:513-520)  相似文献   

20.
To date, little is known about bone resorption during skeletal development in teleostean fish with acellular bone. We report here about bone resorption with regard to growth in the tilapia Oreochromis niloticus. Nine skeletal elements obtained from growing juveniles were examined using histological and histochemical methods, and transmission electron microscopy (TEM). Tartrate-resistant acid phosphatase (TRAP) served as a marker for bone resorbing cells (osteoclasts), alkaline phosphatase (ALP) was used to identify osteoblasts, and alizarin staining indicated sites of bone formation. TRAP-activity was located at those skeletal elements where growth requires bone resorption, and at sites of cartilage degeneration. No TRAP-activity was found at those skeletal elements where resorption was not required for growth. The examination of the praeopercular shaft leads to a model of bone enlargement, including bone resorption by TRAP-positive cells located at the endosteal bone surface and bone formation by ALP-positive cells located at the periosteal bone surface. TRAP-positive cells were mononucleated and lacked a ruffled border. They appeared either as cell aggregates (resembling the shape of multinucleated giant cells) or as flat cells (resembling bone lining cells). Problems of osteoclast identification in bony fish are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号