首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Oh SY  Ju Y  Kim S  Park H 《Oligonucleotides》2010,20(5):225-230
MicroRNAs (miRNAs) are noncoding RNAs approximately 22 nucleotides in length that play a major role in the regulation of important biological processes, including cellular development, differentiation, and apoptosis. Antisense oligonucleotides against miRNAs are useful tools for studying the biological mechanisms and therapeutic targets of miRNAs. Various antisense oligonucleotides chemistries, including peptide nucleic acids (PNAs), have been developed to enhance nuclease-resistance and affinity and specificity for miRNA targets. PNAs have a greater specificity and affinity for DNA and RNA than do natural nucleic acids, and they are resistant to nucleases-an essential property of an miRNA inhibitor that will be exposed to cellular nucleases. However, the main limiting factor in the use of PNAs is their reduced penetration into cells. Recently, several cell-penetrating peptides (CPPs) have been investigated as a means to overcome the limited penetration of PNAs. Here, we evaluated the ability of 11 CPPs to transport PNAs inside cells in the absence of transfection reagents and then investigated the ability of these CPPs to inhibit miRNAs. Of the 11 CPPs tested, Tat-modified-conjugated PNA showed the most effective penetration into cells in the absence of transfection reagents and most effectively inhibited miRNAs. Our data demonstrate that Tat-modified-conjugated CPP is the most suitable for supporting PNA-mediated miRNA inhibition.  相似文献   

2.
The potential use of antisense and siRNA oligonucleotides as therapeutic agents has elicited a great deal of interest. However, a major issue for oligonucleotide-based therapeutics involves effective intracellular delivery of the active molecules. In this Survey and Summary, we review recent reports on delivery strategies, including conjugates of oligonucleotides with various ligands, as well as use of nanocarrier approaches. These are discussed in the context of intracellular trafficking pathways and issues regarding in vivo biodistribution of molecules and nanoparticles. Molecular-sized chemical conjugates and supramolecular nanocarriers each display advantages and disadvantages in terms of effective and nontoxic delivery. Thus, choice of an optimal delivery modality will likely depend on the therapeutic context.  相似文献   

3.
4.
Among the large number of possible antisense species against a given target RNA, only a small number shows effective suppression of the target gene in living cells. In the case of short-chain antisense oligonucleotides (asON) which usually comprise less than approximately 25 nucleotides, local structures of the target RNA seem to be of particular importance for the extent of gene suppression. Experimental approaches to identify promising local target sequences and, hence, complementary asON sequences, have provided tools to define asON that are biologically active at higher than statistical probability. However, experimental protocols are expensive, time consuming, and are associated with intrinsic basic and technical limitations. As insights into the structure-function relationship of asON as well as the role of sequence motifs increase, it becomes feasible to consider computer-based theoretical approaches for the design of effective asON. In the following we describe how individual steps of the theoretical design of asON may be automated by establishing and implementing suitable algorithms.  相似文献   

5.
Because of its interesting chemical, physical and biological properties, Peptide Nucleic Acid (PNA) has attracted major attention in molecular biology, for diagnostics purposes and development of biosensors. PNAs have become candidates for gene therapeutic drugs in ANTISENSE (AO) strategy with favorable in vivo biochemical properties. Recently, antisense PNA oligonucleotides have been described in anti-miRNA approach (AMO). We propose PNA-based nucleases as AO and AMO agents. We report the design, synthesis and characterization of two kinds of artificial nucleases composed of a PEG-PNA-PEG domain conjugated to HGG·Cu (A) and DETA (B) as well known cleavage sites. Qualitative (MALDI-TOF) and quantitative (HTS) assays were planned to study nuclease activity of constructs A and B on RNA-3'-FAM target sequence. The results have highlighted the best performance of nuclease B and the relevance of the PEG spacer, in particular for conjugate A, in terms of efficiency of the cleavage, suggesting that conjugates A and B also act as potential antisense and anti-miRNA agents.  相似文献   

6.
Inhibition of microRNA with antisense oligonucleotides   总被引:3,自引:0,他引:3  
Antisense inhibition of microRNA (miRNA) function has been an important tool for uncovering miRNA biology. Chemical modification of anti-miRNA oligonucleotides (AMOs) is necessary to improve affinity for target miRNA, stabilize the AMO to nuclease degradation, and to promote tissue uptake for in vivo delivery. Here I summarize the work done to evaluate the effectiveness of various chemically modified AMOs for use in cultured cells and rodent models, and outline important issues to consider when inhibiting miRNAs with antisense oligonucleotides.  相似文献   

7.
The efficacy of two different cationic liposomes, Lipofectin and hemagglutinating virus of Japan (HVJ)-cationic liposomes, on nuclear uptake of fluorescence-labeled phosphorothioate oligodeoxyribonucleotide (S-ODN) by ligament scar fibroblasts and suppression of decorin mRNA expression when antisense decorin S-ODN was transferred was investigated. There was no significant difference in nuclear uptake of fluorescent ODN between the two methods. However, only HVJ-cationic liposomes had a significant effect on suppression of decorin mRNA expression levels. To address the discrepancy, the molecular integrity of the transferred ODN in the cells was assessed by analysis of fluorescence resonance energy transfer (FRET) within double-fluorescence-labeled S-ODN. More than 70% of the ODN transfected by HVJ-cationic liposomes remained intact within the nucleus at 20 h after transfection, while the majority of the ODN transferred by Lipofectin was degraded at this point. These results suggest a strong relationship between the nuclear integrity of transfected antisense ODN and its suppression of target mRNA expression.  相似文献   

8.
A biological reporter gene assay was employed to determine the crucial parameters for maximizing selective targeting of a Ha-ras codon 12 point mutation (G----T) using phosphorothioate antisense oligonucleotides. We have tested a series of oligonucleotides ranging in length between 5 and 25 bases, each centered around the codon 12 point mutation. Our results indicate that selective targeting of this point mutation can be achieved with phosphorothioate antisense oligonucleotides, but this selectivity is critically dependent upon oligonucleotide length and concentration. The maximum selectivity observed in antisense experiments, 5-fold for a 17-base oligonucleotide, was closely predicted by a simple thermodynamic model that relates the fraction of mutant to wild type target bound as a function of oligonucleotide concentration and affinity. These results suggest thermodynamic analysis of oligonucleotide/target interactions is useful in predicting the specificity that can be achieved by an antisense oligonucleotide targeted to a single base point mutation.  相似文献   

9.
10.
Improved targeting of miRNA with antisense oligonucleotides   总被引:10,自引:1,他引:9       下载免费PDF全文
  相似文献   

11.
The removal of 4,4'-dimethoxytrityl (DMTr) groups from oligonucleotides at low pH and the acid lability of the glycosidic linkage of purine nucleotides constitute an inherent conflict in preparative oligonucleotide chemistry. The use of a mildly acidic NaOAc buffer (10 mM, pH 3.0-3.2) allows adjustment of the pH in a range where the progress of the DMTr removal reaction can be monitored conveniently by HPLC and the optimum reaction time can be calculated. As a result, oligonucleotides with minimum depurination are obtained.  相似文献   

12.
13.
Antisense and triplex oligonucleotides continue to demonstrate potential as mediators of gene-specific repression of protein synthesis. However, inefficient and heterogeneous cellular uptake, intracellular sequestration, and rapid intracellular and extracellular degradation represent obstacles to their eventual clinical utility. Efficient cellular delivery of targeted ribozymes can present similar problems. In this report we describe a system for circumventing these obstacles and producing large quantities of short, sequence-specific RNA oligonucleotides for use in these gene regulation strategies. The oligonucleotides are generated from a vector containing promoter, capping, and termination sequences from the human small nuclear U6 gene, surrounding a synthetic sequence incorporating the oligonucleotide of interest. In vivo, these oligonucleotides are produced constitutively and without cell type specificity in levels up to 5 x 10(6) copies per cell, reach steady-state levels of expression within 9 hours post-transfection, and are still readily detectable 7 days post-transfection. In addition, these oligonucleotides are retained in the nucleus, obtain a 5' gamma-monomethyl phosphate cap, and have an intracellular half-life of approximately one hour. This expression vector provides a novel and efficient method of intracellular delivery of antisense or triplex RNA oligonucleotides (and/or ribozymes) for gene regulation, as well as a cost-effective means of comparing the biological activity arising from a variety of different potential oligonucleotide sequences.  相似文献   

14.
The catalase-peroxidase encoded by katG of Mycobacterium tuberculosis is a more effective activator of the antibiotic isoniazid than is the equivalent enzyme from Escherichia coli. The environment of the heme iron was investigated using X-ray absorption spectroscopy to determine if differences in this region were associated with the differences in reactivity. The variation in the distal side Fe-ligand distances between the two enzymes was the same within experimental error indicating that it was not the heme iron environment that produced the differences in reactivity. Analysis of variants of the E. coli catalase-peroxidase containing changes in active site residues Arg102 and His106 revealed small differences in Fe-water ligand distance including a shorter distance for the His106Tyr variant. The Arg102Leu variant was 5-coordinate, but His106Cys and Arg102Cys variants showed no changes within experimental error. These results are compared with those reported for other peroxidases.  相似文献   

15.
Experimental studies of the effects of antisense oligonucleotides on translation of mRNAs in cell-free systems are reviewed. Oligonucleotides complementary to the leader sequences or to the sequence overlapping the initiating codon region of mRNAs inhibit translation of the messengers. In the presence of ribonuclease H, oligodeoxyribonucleotides and their phosphorothioate analogs complementary either to the mentioned mRNA regions or to the mRNA coding sequence suppress the translation due to the RNAs cleavage. This inhibition-enhancing mechanism does not operate in the case of the oligonucleotide analogs--oligonucleoside methylphosphonates and oligonucleotides built of the alpha-nucleosides, since the complexes formed by RNA and these analogs are not substrates of the ribonuclease H. The translation inhibition efficiency is determined by the oligonucleotides lengths and by the availability of the complementary sequence in the mRNA structure. The oligonucleotides inhibitory power can be improved by the coupling to the oligonucleotides of the intercalating groups and the reactive groups.  相似文献   

16.
Chemically modified antisense oligonucleotides (ASOs) designed to mediate site-specific cleavage of RNA by RNase H1 are used as research tools and as therapeutics. ASOs modified with phosphorothioate (PS) linkages enter cells via endocytotic pathways. The mechanisms by which PS-ASOs are released from membrane-enclosed endocytotic organelles to reach target RNAs remain largely unknown. We recently found that annexin A2 (ANXA2) co-localizes with PS-ASOs in late endosomes (LEs) and enhances ASO activity. Here, we show that co-localization of ANXA2 with PS-ASO is not dependent on their direct interactions or mediated by ANXA2 partner protein S100A10. Instead, ANXA2 accompanies the transport of PS-ASOs to LEs, as ANXA2/PS-ASO co-localization was observed inside LEs. Although ANXA2 appears not to affect levels of PS-ASO internalization, ANXA2 reduction caused significant accumulation of ASOs in early endosomes (EEs) and reduced localization in LEs and decreased PS-ASO activity. Importantly, the kinetics of PS-ASO activity upon free uptake show that target mRNA reduction occurs at least 4 hrs after PS-ASOs exit from EEs and is coincident with release from LEs. Taken together, our results indicate that ANXA2 facilitates PS-ASO trafficking from early to late endosomes where it may also contribute to PS-ASO release.  相似文献   

17.
Modification of the heterocyclic moiety of oligonucleotides has led to the discovery of potent antisense compounds. This review describes the physicochemical factors that are responsible for duplex stabilization through base modification. A summary is given of the different heterocyclic modifications that can be used to beneficially influence this duplex stability. The biologic activity of base-modified oligonucleotides is described, and the different factors that are important for obtaining in vivo antisense activity with heterocyclic-modified oligonucleotides are summarized.  相似文献   

18.
19.
We studied the effects of antisense oligonucleotides (AS oligos) with a novel structure. The AS oligos were covalently closed to avoid exonuclease activities by enzymatic ligation of two identical molecules. The AS oligos of a ribbon type (RiAS oligos) consist of two loops containing multiple antisense sequences and a stem connecting the two loops. Three antisense sequences targeting different binding sites were placed in a loop that was designed to form a minimal secondary structure by itself. RiAS oligos were found to be stable because they largely preserved their structural integrity after 24 h incubation in the presence of either exonuclease III or serums. When a human promyelocytic cell line, HL-60, was treated with RiAS oligos to c-myb, c-myb expression was effectively ablated. Cell growth was inhibited by >90% determined by both the 3-[4,5-dimethythiazol-2-yl]-2,5-diphenyltetrazolium bromide assay and [(3)H]thymidine incorporation. Further, when the leukemic cell line K562 was treated with c-myb RiAS oligos, colony formation on soft agarose was reduced by 92 +/- 2%. These results suggest that RiAS oligos may be employed for developing molecular antisense drugs as well as for the functional study of a gene.  相似文献   

20.
PAMAM dendrimers are cationic polymers that have been used for the delivery of genes and oligonucleotides to cells. However, little is known about the behavior of dendrimer–nucleic acid complexes once they reach the cell interior. To pursue this issue, we prepared dendrimers conjugated with the fluorescent dye Oregon green 488. These were used in conjunction with oligonucleotides labeled with a red (TAMRA) fluorophore in order to visualize the sub-cellular distribution of the dendrimer–oligonucleotide complex and of its components by two-color digital fluorescence microscopy. The 2′-O-methyl antisense oligonucleotide sequence used in these studies was designed to correct splicing at an aberrant intron inserted into a luciferase reporter gene; thus effective delivery of the antisense agent results in the expression of the reporter gene product. The dendrimer–oligonucleotide complex remained associated during the process of uptake into vesicular compartments and eventual entry into the nucleus. Since the pharmacological activity of the antisense compound was manifest under these conditions, it suggests that the dendrimer–oligonucleotide complex is functionally active. A surprising result of these studies was that the Oregon green 488-conjugated dendrimer was a much better delivery agent for antisense compounds than unmodified dendrimer. This suggests that coupling of relatively hydrophobic small molecules to PAMAM dendrimers may provide a useful means of enhancing their capabilities as delivery agents for nucleic acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号