首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Towards the ideal GMP: homologous recombination and marker gene excision   总被引:9,自引:0,他引:9  
A mayor aim of biotechnology is the establishment of techniques for the precise manipulation of plant genomes. Two major efforts have been undertaken over the last dozen years, one to set up techniques for site-specific alteration of the plant genome via homologous recombination ("gene targeting") and the other for the removal of selectable marker genes from transgenic plants. Unfortunately, despite multiple promising approaches that will be shortly described in this review no feasible gene targeting technique has been developed till now for crop plants. In contrast, several alternative procedures have been established successfully to remove selectable markers from plant genomes. Intriguingly besides techniques relying on transposons and site-specific recombinases, recent results indicate that homologous recombination might be a valuable alternative for the excision of marker genes.  相似文献   

2.
Gene-targeting to create null mutants or designed-point mutants is a powerful tool for the molecular dissection of complex phenotypes involving DNA repair, signal transduction, and metabolism. Because gene-targeting is critically impaired in mutants exhibiting attenuated homologous recombination (HR), it is believed that gene-targeting is mediated via homologous recombination, though the precise mechanism remains unknown. We explored gene-targeting in yeast and avian DT40 cells. In animal cells, gene-targeting is activated by DNA double strand breaks introduced into the genomic region where gene-targeting occurs. This is evidenced by the fact that introducing double strand breaks at targeted genome sequences via artificial endonucleases such as TALEN and CRISPR facilitates gene-targeting. We found that in fission yeast, Schizosaccharomyces pombe, gene-targeting was initiated from double strand breaks on both edges of the homologous arms in the targeting construct. Strikingly, we also found efficient gene-targeting initiated on the edges of homologous arms in avian DT40 cells, a unique animal cell line in which efficient gene-targeting has been demonstrated. It may be that yeast and DT40 cells share some mechanism in which unknown factors detect and recombine broken DNA ends at homologous arms accompanied by crossover. We found efficient targeted integration of gapped plasmids accompanied by crossover in the DT40 cells. To take advantage of this finding, we developed a targeted flip-in system for avian DT40 cells. This flip-in system enables the rapid generation of cells expressing tag-fused proteins and the stable expression of transgenes from OVA loci.  相似文献   

3.
Tong C  Huang G  Ashton C  Li P  Ying QL 《Nature protocols》2011,6(6):827-844
We describe here a detailed protocol for generating gene knockout rats by homologous recombination in embryonic stem (ES) cells. This protocol comprises the following procedures: derivation and expansion of rat ES cells, construction of gene-targeting vectors, generation of gene-targeted rat ES cells and, finally, production of gene-targeted rats. The major differences between this protocol and the classical mouse gene-targeting protocol include ES cell culture methods, drug selection scheme, colony picking and screening strategies. This ES cell-based gene-targeting technique allows sophisticated genetic modifications to be performed in the rat, as many laboratories have been doing in the mouse for the past two decades. Recently we used this protocol to generate Tp53 (also known as p53) gene knockout rats. The entire process requires ~1 year to complete, from derivation of ES cells to generation of knockout rats.  相似文献   

4.
Kurosawa A  Saito S  Mori M  Adachi N 《Gene》2012,492(1):305-308
Electroporation is a powerful and convenient means for transfection of nonviral vectors into mammalian cells, providing an essential tool for numerous applications including gene targeting via homologous recombination. Recent evidence clearly suggests that high-efficiency gene transfer can be achieved in most cell lines by nucleofection, an electroporation-based transfection method that allows transfected vectors to directly enter the nucleus. In this paper, we analyze the effectiveness of nucleofection for gene targeting using human pre-B cells. For this, we tested 93 different transfection conditions, and found several conditions that gave high (~ 80%) transfection efficiency with low cytotoxicity (~ 70% survival rate). Remarkably, under the optimal nucleofection conditions, the gene-targeting efficiency was ~ 2-5-fold higher than that achieved with conventional electroporation methods. We also found that nucleofection conditions with high transfection efficiency and low cytotoxicity tend to provide high gene-targeting efficiency. Our results provide significant implications for gene targeting, and suggest that nucleofection-based nonviral gene transfer is useful for systematic generation of human gene-knockout cell lines.  相似文献   

5.
The capability to modify a genomic sequence into a designed sequence is a powerful tool for biologists and breeders to elucidate the function of an individual gene and its cis-acting elements of multigene families in the genome. Gene targeting refers to the alteration of a specific DNA sequence in an endogenous gene at its original locus in the genome. In higher plants, however, the overwhelming occurrence of the random integration of transgenes by non-homologous end-joining is the main obstacle to develop efficient gene targeting. Two approaches have been undertaken to modify a genomic sequence in higher plants– chimeric RNA/DNA oligonucleotide-directed gene targeting to generate a site-specific base conversion, and homologous recombination-dependent gene targeting to produce either a base change or a gene replacement in a sequence-specific manner. The successful and reproducible targeting of an endogenous gene by homologous recombination, independently of gene-specific selection by employing a strong positive-negative selection, has been demonstrated for the first time in rice, an important staple food and a model plant for other cereal species. This review addresses the current status of targeting of an endogenous natural gene in rice and other higher plants and discusses possible models for Agrobacterium- mediated gene targeting by homologous recombination using a strong positive–negative selection.  相似文献   

6.
Artificial gene alteration by homologous recombination in living cells, termed gene targeting, presents fundamental and considerable knowledge of in vivo gene function. In principle, this method can possibly be applied to any type of genes and transformable cells. However, its success is limited due to a low frequency of homologous recombination between endogenous targeted gene and exogenous transgene. Here, we describe a general gene-targeting method in which co-transformation of DNA oligonucleotides (oligomers) could significantly increase the homologous recombination frequency and transformation efficiency. The oligomers were simply designed such that they were identical to both the ends of the homologous flanking regions of the targeting construct. Using this strategy, both targeted alleles of diploid cells were simultaneously replaced in a single transformation procedure. Thus, the simplicity and versatility of this method applicable to any type of cell may increase the application of gene targeting.  相似文献   

7.
We evaluate here the use of real-time quantitative PCR (q-PCR) as a method for screening for homologous recombinants generated in mammalian cells from either conventional gene-targeting constructs or whole BAC-based constructs. Using gene-targeted events at different loci, we show that q-PCR is a highly sensitive and accurate method for screening for conventional gene targeting that can reduce the number of clones requiring follow-up screening by Southern blotting. We further compared q-PCR to fluorescent in situ hybridization (FISH) for the detection of gene-targeting events using full-length BAC-based constructs designed to introduce mutations either into one gene or simultaneously into two adjacent genes. We find that although BAC-based constructs appeared to have high rates of homologous recombination when evaluated by FISH, screening by FISH was prone to false positives that were detected by q-PCR. Our results demonstrate the utility of q-PCR as a screening tool for gene targeting and further highlight potential problems with the use of whole BAC-based constructs for homologous recombination.  相似文献   

8.
Vectors used for gene targeting experiments usually consist of a selectable marker flanked by two regions of homology to the targeted gene. In a homologous recombination event, the selectable marker replaces an essential element of the target gene rendering it inactive. Other applications of gene targeting technology include gene replacement (knockins) and conditional vectors which allow for the generation of inducible or tissue-specific gene-targeting events. The assembly of gene-targeting vectors is generally a laborious process requiring considerable technical skill. The procedures presented here report the application of transposons as tools for the construction of targeting vectors. Two mini-Mu transposons were sequentially inserted by in vitro transposition at each side of the region targeted for deletion. One such transposon carries an antibiotic resistance marker suitable for selection in mammalian cells. A deletion is then generated between the two transposons either by LoxP-induced recombination or by restriction digestion followed by ligation. This deletion removes part of both transposons plus the targeted region in between, leaving a transposon carrying the selectable marker flanked by two arms which are homologous to the targeted gene. Targeting vectors constructed using these transposons were electroporated into embryonic stem cells and shown to be effective in gene-targeting events.  相似文献   

9.
10.
Immortal cells require a mechanism of telomere length control in order to divide infinitely. One mechanism is telomerase, an enzyme that compensates the loss of telomeric DNA. The second mechanism is the alternative lengthening of telomeres (ALT) pathway. In ALT pathway cells, homologous recombination between telomeric DNA is the mechanism by which telomere homeostasis is achieved. We developed a novel homologous recombination reporter system that is able to measure inter-telomeric recombination in a sensitive manner. We asked the fundamental question if homologous recombination between different telomeres is present in telomerase-positive cells. In this in vitro study, we showed that homologous recombination between telomeres is detectable in ALT cells with the same frequency as in cells that utilize the telomerase pathway. We further described an ALT cell clone that showed peaks of recombination which were not detected in telomerase-positive clones. In telomerase-positive cells the frequency of inter-telomeric recombination was not increased by shortened telomeres or by a fragile telomere phenotype induced with aphidicolin. ALT cells, in contrast, responded to aphidicolin with an increase in the frequency of recombination. Our results indicate that inter-telomeric recombination is present in both pathways of telomere length control, but the factors that increase recombination are different in ALT and telomerase-positive cells.  相似文献   

11.
Combining gene targeting of animal somatic cells with nuclear transfer technique has provided a powerful method to produce transgenic animal mammary gland bioreactor. The objective of this study is to make an efficient and reproducible gene targeting in goat fetal fibroblasts by inserting the exogenous htPAm cDNA into the beta-casein locus with liposomes or electroporation so that htPAm protein might be produced in gene-targeted goat mammary gland. By gene-targeting technique, the exogenous htPAm gene was inserted to milk goat beta-casein gene sequences. Fetal fibroblasts were isolated from Day 35 fetuses of Guanzhong milk goats, and transfected with linear gene-targeting vector pGBC4htPAm using Lipefectamin-2000 and electoporation, respectively. Forty-eight gene-targeted cell colonies with homologous recombination were obtained, and three cell colonies were verified by DNA sequence analysis within the homologous recombination region. Using gene-targeted cell lines as donor cells for nuclear transfer, a total of 600 reconstructed embryos had been obtained, and 146 developed cloned embryos were transferred to 16 recipient goats, and finally three goats showed pregnancy at Day 90.  相似文献   

12.
The Rad51 gene is the mammalian homologue of the bacterial RecA gene and catalyses homologous recombination in mammalian cells. In some cell types Rad51 has been shown to interact with p53, leading to inhibition of Rad51 activity. Here, we show a two- to four-fold increase in gene-targeting frequency at the HPRT locus using murine ES clones preengineered to overexpress Rad51, and a twofold increase in targeting frequency when a Rad51 expression cassette was cointroduced to wild-type ES cells with the targeting construct. In addition to its effect on homologous recombination, we show that Rad51 may down-regulate illegitimate recombination. We investigated the dependence of these phenomena upon p53 and found no evidence that the Rad 51-mediated increase is affected by the functional status of p53, a conclusion supported by the observed cytoplasmic localisation of p53 in ES cells following electroporation. Furthermore, in the absence of additional Rad51, p53-deficient ES cells do not have elevated rates of homologous recombination with extrachromosomal DNA. These findings demonstrate that Rad51 levels modify both homologous and illegitimate recombination, but that these phenomena are independent of p53 status.  相似文献   

13.
Identification of the function of all genes in the mammalian genome is critical in understanding basic mechanisms of biology. However, the diploidy of mammalian somatic cells has greatly hindered efforts to elucidate the gene function in numerous biological processes by mutagenesis-based genetic approaches. Recently, mouse haploid embryonic stem (haES) cells have been successfully isolated from parthenogenetic and androgenetic embryos, providing an ideal tool for genetic analyses. In these studies, mouse haES cells have already shown that they could be used in cell-based forward or reverse genetic screenings and in generating gene-targeting via homologous recombination. In particular, haES cells from androgenetic embryos can be employed as novel, renewable form of fertilization agent for yielding live-born mice via injection into oocytes, thus showing the possibility that genetic analysis can be extended from cellular level to organism level.  相似文献   

14.
Mammalian cells are able to repair chromosomal double-strand breaks (DSBs) both by homologous recombination and by mechanisms that require little or no homology. Although spontaneous homologous recombination is rare, DSBs will stimulate recombination by 2 to 3 orders of magnitude when homology is provided either from exogenous DNA in gene-targeting experiments or from a repeated chromosomal sequence. Using a gene-targeting assay in mouse embryonic stem cells, we now investigate the effect of heterology on recombinational repair of DSBs. Cells were cotransfected with an endonuclease expression plasmid to induce chromosomal DSBs and with substrates containing up to 1.2% heterology from which to repair the DSBs. We find that heterology decreases the efficiency of recombinational repair, with 1.2% sequence divergence resulting in an approximately sixfold reduction in recombination. Gene conversion tract lengths were examined in 80 recombinants. Relatively short gene conversion tracts were observed, with 80% of the recombinants having tracts of 58 bp or less. These results suggest that chromosome ends in mammalian cells are generally protected from extensive degradation prior to recombination. Gene conversion tracts that were long (up to 511 bp) were continuous, i.e., they contained an uninterrupted incorporation of the silent mutations. This continuity suggests that these long tracts arose from extensive degradation of the ends or from formation of heteroduplex DNA which is corrected with a strong bias in the direction of the unbroken strand.  相似文献   

15.
16.
17.
基因打靶及其应用   总被引:4,自引:0,他引:4  
用活细胞染色体DNA可与外源性DNA同源序列发生同源重组的性质,达到定点修饰改造染色体某基因的目的,此法称基因打靶.基因的同源重组是较普遍的生物现象,其分子机理尚未阐明,但活细胞内确有一酶系可使DNA的同源序列在细胞内发生重组,这一事实已无可争辨.此事实为基因打靶的理论基础.基因打靶技术操作的关键是建立一含筛选基因的重组载体,并有效地把它转入细胞核内.基因打靶命中的细胞可稳定遗传.基因打靶在改造生物品种,一些复杂生命现象(如发育的分子机制等)及临床理论研究均有广阔的前景.  相似文献   

18.
Red/ET重组在基因打靶载体快速构建中的应用   总被引:6,自引:0,他引:6  
王军平  张友明 《遗传》2005,27(6):953-958
通过合理应用Red/ET重组技术实现基因打靶载体的快速构建。在Red/ET重组介导下,首先从基因组DNA中将靶基因片段亚克隆至打靶质粒载体中,随后将两端带有50 bp同源臂的抗性筛选基因插入并替换靶基因上的目标序列,如此两步操作即可完成一个传统型基因敲除打靶载体的构建;结合Cre-loxP系统,在传统型基因敲除打靶载体的基础上,经过再一轮的Red/ET重组就能够成功实现条件性基因敲除打靶载体的构建。整个实验过程不需要PCR扩增长、短臂序列,也不涉及酶切、连接反应,因此,不仅省时、省力,而且所构建的基因打靶载体序列准确,无突变。此实验方法的建立为加速后基因组时代的基因功能研究提供了一条捷径。  相似文献   

19.
抗肿瘤药物疗效的研究多集中在肿瘤细胞,目前针对正常细胞的研究颇少,有必要建立能进行定量分析的同源重组定量修复体系。我们已建立的模型可以探讨肿瘤药物化疗后对HEK293细胞DSBs修复的继发性后果。通过构建含有带I-SceⅠ酶切位点的同源介导的重组修复底物(homologous direct recombination, HDR),或单链退火修复(single strand annealing, SSA)底物的细胞株,定量检测依托泊苷 (etoposide,VP-l6)对同源性重组修复(homologous recombination, HR)通路的影响。成功构建了可用于定量检测DNA双链断裂(double-strand break, DSBs)诱导的SSA和HDR修复的正常人HEK293细胞应用模型。细胞毒结果证实,与SSA/293对照组对比,VP-16给药组 16 μmol/L(0.475±0.029 vs 1.000±0.000, P<0.001)细胞活力明显降低;与HDR/293对照组相比,VP-16 给药组16 μmol/L(0.458±0.188 vs 1.000±0.000, P<0.05)细胞活力降低。此外,本研究证实,VP-16抑制SSA修复,VP-16给药组 2 μmol/L与SSA/293对照组相比(0.575%±0.177% vs 1.352%±0.195%, P<0.05),修复效率降低;VP-16抑制HDR修复,VP-16给药组1 μmol/L与HDR/293对照组修复效率相比(0.305%±0.078% vs. 0.635%± 0.049%,P<0.05),修复效率降低。VP-16诱导DNA损伤的同时,抑制HDR修复和SSA修复,修复效率呈现剂量依赖性。本研究结果可为抗肿瘤药物的临床应用提供某些指导。  相似文献   

20.
锌指核酸内切酶:基因操作的有力工具   总被引:1,自引:0,他引:1  
针对动植物进行基因靶向操作的技术,是解析基因功能、研究疾病,以及农业经济生产中一个有用的工具。至今,基因靶向操作主要是通过在胚胎干细胞(embryonic stem cell,ES cell)中进行同源重组或者是体细胞核转移的方法进行,但同源重组方法由于需要ES细胞而被限制在个别物种,而核转移方法存在核去分化、效率低、成本高的缺陷。近几年,一种基于锌指核酸内切酶(zinc-finger nuclease,ZFN)基因靶向修饰的新技术被应用于包括植物、果蝇、爪蟾、斑马鱼和大鼠等不同物种的基因操作。通过胚胎注射ZFN的质粒或是mRNA可以有效地定靶并迅速地在内源基因上引起可遗传的突变。ZFN介导基因靶向敲除的可行性,使得那些无法获得ES细胞和克隆技术支持的物种的基因靶向修饰成为可能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号