首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

There are four cell lineages derived from intestinal stem cells that are located at the crypt and villus in the mammalian intestine the non-secretory absorptive enterocytes, and the secretory cells, which include mucous-secreting goblet cells, regulatory peptide-secreting enteroendocrine cells and antimicrobial peptide-secreting Paneth cells. Although fibroblast growth factor (Fgf) signaling is important for cell proliferation and differentiation in various tissues, its role in intestinal differentiation is less well understood.

Methodology/Principal Findings

We used a loss of function approach to investigate the importance of Fgf signaling in intestinal cell differentiation in zebrafish; abnormal differentiation of goblet cells was observed when Fgf signaling was inhibited using SU5402 or in the Tg(hsp70ldnfgfr1-EGFP) transgenic line. We identified Fgfr2c as an important receptor for cell differentiation. The number of goblet cells and enteroendocrine cells was reduced in fgfr2c morphants. In addition to secretory cells, enterocyte differentiation was also disrupted in fgfr2c morphants. Furthermore, proliferating cells were increased in the morphants. Interestingly, the loss of fgfr2c expression repressed secretory cell differentiation and increased cell proliferation in the mibta52b mutant that had defective Notch signaling.

Conclusions/Significance

In conclusion, we found that Fgfr2c signaling derived from mesenchymal cells is important for regulating the differentiation of zebrafish intestine epithelial cells by promoting cell cycle exit. The results of Fgfr2c knockdown in mibta52b mutants indicated that Fgfr2c signaling is required for intestinal cell differentiation. These findings provide new evidences that Fgf signaling is required for the differentiation of intestinal cells in the zebrafish developing gut.  相似文献   

2.

Background

The choroid plexus (ChP), a component of the blood-brain barrier (BBB), produces the cerebrospinal fluid (CSF) and as a result plays a role in (i) protecting and nurturing the brain as well as (ii) in coordinating neuronal migration during neurodevelopment. Until now ChP development was not analyzed in living vertebrates due to technical problems.

Methodology/Principal Findings

We have analyzed the formation of the fourth ventricle ChP of zebrafish in the GFP-tagged enhancer trap transgenic line SqET33-E20 (Gateways) by a combination of in vivo imaging, histology and mutant analysis. This process includes the formation of the tela choroidea (TC), the recruitment of cells from rhombic lips and, finally, the coalescence of TC resulting in formation of ChP. In Notch-deficient mib mutants the first phase of this process is affected with premature GFP expression, deficient cell recruitment into TC and abnormal patterning of ChP. In Hedgehog-deficient smu mutants the second phase of the ChP morphogenesis lacks cell recruitment and TC cells undergo apoptosis.

Conclusions/Significance

This study is the first to demonstrate the formation of ChP in vivo revealing a role of Notch and Hedgehog signalling pathways during different developmental phases of this process.  相似文献   

3.
4.
5.
6.

Background

Difficulties associated with implementing gene therapy are caused by the complexity of the underlying regulatory networks. The forms of interactions between the hundreds of genes, proteins, and metabolites in these networks are not known very accurately. An alternative approach is to limit consideration to genes on the network. Steady state measurements of these influence networks can be obtained from DNA microarray experiments. However, since they contain a large number of nodes, the computation of influence networks requires a prohibitively large set of microarray experiments. Furthermore, error estimates of the network make verifiable predictions impossible.

Methodology/Principal Findings

Here, we propose an alternative approach. Rather than attempting to derive an accurate model of the network, we ask what questions can be addressed using lower dimensional, highly simplified models. More importantly, is it possible to use such robust features in applications? We first identify a small group of genes that can be used to affect changes in other nodes of the network. The reduced effective empirical subnetwork (EES) can be computed using steady state measurements on a small number of genetically perturbed systems. We show that the EES can be used to make predictions on expression profiles of other mutants, and to compute how to implement pre-specified changes in the steady state of the underlying biological process. These assertions are verified in a synthetic influence network. We also use previously published experimental data to compute the EES associated with an oxygen deprivation network of E.coli, and use it to predict gene expression levels on a double mutant. The predictions are significantly different from the experimental results for less than of genes.

Conclusions/Significance

The constraints imposed by gene expression levels of mutants can be used to address a selected set of questions about a gene network.  相似文献   

7.
8.

Background

Genetic studies in yeast have identified class E vps genes that form the ESCRT complexes required for protein sorting at the early endosome. In Drosophila, mutations of the ESCRT-II component vps25 cause endosomal defects leading to accumulation of Notch protein and increased Notch pathway activity. These endosomal and signaling defects are thought to account for several phenotypes. Depending on the developmental context, two different types of overgrowth can be detected. Tissue predominantly mutant for vps25 displays neoplastic tumor characteristics. In contrast, vps25 mutant clones in a wild-type background trigger hyperplastic overgrowth in a non-autonomous manner. In addition, vps25 mutant clones also promote apoptotic resistance in a non-autonomous manner.

Principal Findings

Here, we genetically characterize the remaining ESCRT-II components vps22 and vps36. Like vps25, mutants of vps22 and vps36 display endosomal defects, accumulate Notch protein and – when the tissue is predominantly mutant – show neoplastic tumor characteristics. However, despite these common phenotypes, they have distinct non-autonomous phenotypes. While vps22 mutations cause strong non-autonomous overgrowth, they do not affect apoptotic resistance. In contrast, vps36 mutations increase apoptotic resistance, but have little effect on non-autonomous proliferation. Further characterization reveals that although all ESCRT-II mutants accumulate Notch protein, only vps22 and vps25 mutations trigger Notch activity.

Conclusions/Significance

The ESCRT-II components vps22, vps25 and vps36 display common and distinct genetic properties. Our data redefine the role of Notch for hyperplastic and neoplastic overgrowth in these mutants. While Notch is required for hyperplastic growth, it appears to be dispensable for neoplastic transformation.  相似文献   

9.

Background

In a recent genomic study, Leung et al. used a factorial microarray analysis to identify Smarca4 (Brg1)-regulated genes in micro-dissected zebrafish retinas. Two hundred and fifty nine genes were grouped in three-way ANOVA models which carried the most specific retinal change. To validate the microarray results and to elucidate cellular expression patterns of the significant genes for further characterization, 32 known genes were randomly selected from this group. In situ hybridization of these genes was performed on the same types of samples (wild-type (WT) and smarca4 a50/a50 (yng) mutant) at the same stages (36 and 52 hours post-fertilization (hpf)) as in the microarray study.

Results

Thirty out of 32 riboprobes showed a positive in situ staining signal. Twenty seven out of these 30 genes were originally further classified as Smarca4-regulated retinal genes, while the remaining three as retinal-specific expression independent of Smarca4 regulation. It was found that 90.32% of the significant microarray comparisons that were used to identify Smarca4-regulated retinal genes had a corresponding qualitative expression change in the in situ hybridization comparisons. This is highly concordant with the theoretical true discovery rate of 95%. Hierarchical clustering was used to investigate the similarity of the cellular expression patterns of 25 out of the 27 Smarca4-regulated retinal genes that had a sufficiently high expression signal for an unambiguous identification of retinal expression domains. Three broad groups of expression pattern were identified; including 1) photoreceptor layer/outer nuclear layer specific expression at 52 hpf, 2) ganglion cell layer (GCL) and/or inner nuclear layer (INL) specific expression at both 36 & 52 hpf, and 3) GCL and/or INL specific expression at 52 hpf only. Some of these genes have recently been demonstrated to play key roles in retinal cell-type specification, differentiation and lamination. For the remaining three retinal-specific genes that are independent of Smarca4 regulation, they all had a subtle expression difference between WT and smarca4 a50/a50 retinas as detected by in situ hybridization. This subtle expression difference was also detected by the original microarray analysis. However, the difference was lower than the fold change cut-off used in that study and hence these genes were not inferred as Smarca4-regulated retinal genes.

Conclusions

This study has successfully investigated the expression pattern of 32 genes identified from the original factorial microarray analysis. The results have demonstrated that the true discovery rate for identifying Smarca4-regulated retinal genes is 90.3%. Hence, the significant genes from the microarray study are good candidates for cell-type specific markers and will aid further investigation of retinal differentiation.  相似文献   

10.
11.

Background

Mutagenesis screens in the mouse have been proven useful for the identification of novel gene functions and generation of interesting mutant alleles. Here we describe a phenotype-based screen for recessive mutations affecting embryonic development.

Methodology/Principal Findings

Mice were mutagenized with N-ethyl-N-nitrosurea (ENU) and following incrossing the offspring, embryos were analyzed at embryonic day 10.5. Mutant phenotypes that arose in our screen include cardiac and nuchal edema, neural tube defects, situs inversus of the heart, posterior truncation and the absence of limbs and lungs. We isolated amongst others novel mutant alleles for Dll1, Ptprb, Plexin-B2, Fgf10, Wnt3a, Ncx1, Scrib(Scrib, Scribbled homolog [Drosophila]) and Sec24b. We found both nonsense alleles leading to severe protein truncations and mutants with single-amino acid substitutions that are informative at a molecular level. Novel findings include an ectopic neural tube in our Dll1 mutant and lung defects in the planar cell polarity mutants for Sec24b and Scrib.

Conclusions/Significance

Using a forward genetics approach, we have generated a number of novel mutant alleles that are linked to disturbed morphogenesis during development.  相似文献   

12.
13.
Xie G  Zhang H  Du G  Huang Q  Liang X  Ma J  Jiao R 《PloS one》2012,7(4):e36362

Background

Notch signaling is a highly conserved pathway in multi-cellular organisms ranging from flies to humans. It controls a variety of developmental processes by stimulating the expression of its target genes in a highly specific manner both spatially and temporally. The diversity, specificity and sensitivity of the Notch signaling output are regulated at distinct levels, particularly at the level of ligand-receptor interactions.

Methodology/Principal Findings

Here, we report that the Drosophila gene uninflatable (uif), which encodes a large transmembrane protein with eighteen EGF-like repeats in its extracellular domain, can antagonize the canonical Notch signaling pathway. Overexpression of Uif or ectopic expression of a neomorphic form of Uif, Uif*, causes Notch signaling defects in both the wing and the sensory organ precursors. Further experiments suggest that ectopic expression of Uif* inhibits Notch signaling in cis and acts at a step that is dependent on the extracellular domain of Notch. Our results suggest that Uif can alter the accessibility of the Notch extracellular domain to its ligands during Notch activation.

Conclusions/Significance

Our study shows that Uif can modulate Notch activity, illustrating the importance of a delicate regulation of this signaling pathway for normal patterning.  相似文献   

14.
Koo BK  Yoon MJ  Yoon KJ  Im SK  Kim YY  Kim CH  Suh PG  Jan YN  Kong YY 《PloS one》2007,2(11):e1221

Background

The Notch signaling pathway is an evolutionarily conserved intercellular signaling module essential for cell fate specification that requires endocytosis of Notch ligands. Structurally distinct E3 ubiquitin ligases, Neuralized (Neur) and Mind bomb (Mib), cooperatively regulate the endocytosis of Notch ligands in Drosophila. However, the respective roles of the mammalian E3 ubiquitin ligases, Neur1, Neur2, Mib1, and Mib2, in mammalian development are poorly understood.

Methodology/Principal Findings

Through extensive use of mammalian genetics, here we show that Neur1 and Neur2 double mutants and Mib2−/− mice were viable and grossly normal. In contrast, conditional inactivation of Mib1 in various tissues revealed the representative Notch phenotypes: defects of arterial specification as deltalike4 mutants, abnormal cerebellum and skin development as jagged1 conditional mutants, and syndactylism as jagged2 mutants.

Conclusions/Significance

Our data provide the first evidence that Mib1 is essential for Jagged as well as Deltalike ligand-mediated Notch signaling in mammalian development, while Neur1, Neur2, and Mib2 are dispensable.  相似文献   

15.
Valor LM  Grant SG 《PloS one》2007,2(12):e1303

Background

Gene expression profiling using microarrays is a powerful technology widely used to study regulatory networks. Profiling of mRNA levels in mutant organisms has the potential to identify genes regulated by the mutated protein.

Methodology/Principle Findings

Using tissues from multiple lines of knockout mice we have examined genome-wide changes in gene expression. We report that a significant proportion of changed genes were found near the targeted gene.

Conclusions/Significance

The apparent clustering of these genes was explained by the presence of flanking DNA from the parental ES cell. We provide recommendations for the analysis and reporting of microarray data from knockout mice  相似文献   

16.
17.
18.
19.

Background

Lamins A and C, encoded by the LMNA gene, are filamentous proteins that form the core scaffold of the nuclear lamina. Dominant LMNA gene mutations cause multiple human diseases including cardiac and skeletal myopathies. The nuclear lamina is thought to regulate gene expression by its direct interaction with chromatin. LMNA gene mutations may mediate disease by disrupting normal gene expression.

Methods/Findings

To investigate the hypothesis that mutant lamin A/C changes the lamina''s ability to interact with chromatin, we studied gene misexpression resulting from the cardiomyopathic LMNA E161K mutation and correlated this with changes in chromosome positioning. We identified clusters of misexpressed genes and examined the nuclear positioning of two such genomic clusters, each harboring genes relevant to striated muscle disease including LMO7 and MBNL2. Both gene clusters were found to be more centrally positioned in LMNA-mutant nuclei. Additionally, these loci were less compacted. In LMNA mutant heart and fibroblasts, we found that chromosome 13 had a disproportionately high fraction of misexpressed genes. Using three-dimensional fluorescence in situ hybridization we found that the entire territory of chromosome 13 was displaced towards the center of the nucleus in LMNA mutant fibroblasts. Additional cardiomyopathic LMNA gene mutations were also shown to have abnormal positioning of chromosome 13, although in the opposite direction.

Conclusions

These data support a model in which LMNA mutations perturb the intranuclear positioning and compaction of chromosomal domains and provide a mechanism by which gene expression may be altered.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号