首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Caloric restriction (CR) is known to effectively elongate mammalian life-spans. The compound 2-deoxy-d-glucose (2DG), which is often used as an inhibitor of glucose utilization, is a mimetic agent of CR. In this study, we examined the changes of telomerase and Werner’s syndrome RecQ (WRN) helicase after treatment with 2DG, because of the involvement of recQ helicase in the regulation of telomeres. Interestingly, 2DG treatment increased the expression of WRN protein in accordance with induction of its promoter activity and gene expression. Furthermore, the activation of telomerase was observed after 2DG treatment, whereas it resulted in the reduction of cell proliferation. These results suggest that 2DG could up-regulate telomere maintenance factors accompanied with suppression of proliferation.  相似文献   

4.
The INK4a/ARF locus, which is frequently inactivated in human tumors, encodes two distinct tumor suppressive proteins, ARF and p16INK4a. ARF stabilizes and activates p53 by negating the effects of mdm2 on p53. Furthermore, its function is not restricted to the p53 pathway and it also inhibits cell proliferation in cells lacking p53. Expression of ARF is up-regulated in response to a number of oncogenic stimuli including E2F1. We show here that while oncogenic Ras does not significantly affect p1(4AR)F expression in normal human cells it activates p1(4AR)F in cells containing deregulated E2F. Moreover, oncogenic Ras and E2F1 synergize in activating p1(4AR)F expression. Activation of p1(4AR)F promoter by E2F1 persists in the absence of the consensus E2F-binding sites in this promoter, indicating that this activation also occurs through non- canonical binding sites. The activation by oncogenic Ras requires both E2F and Sp-1 activity, demonstrating the complex regulation of p14(ARF) in response to oncogenic stimuli.  相似文献   

5.
The importance of microRNAs in the regulation of various aspects of biology and disease is well recognized. However, what remains largely unappreciated is that a significant number of miRNAs are embedded within and are often co-expressed with protein-coding host genes. Such a configuration raises the possibility of a functional interaction between a miRNA and the gene it resides in. This is exemplified by the Drosophila melanogaster dE2f1 gene that harbors two miRNAs, mir-11 and mir-998, within its last intron. miR-11 was demonstrated to limit the proapoptotic function of dE2F1 by repressing cell death genes that are directly regulated by dE2F1, however the biological role of miR-998 was unknown. Here we show that one of the functions of miR-998 is to suppress dE2F1-dependent cell death specifically in rbf mutants by elevating EGFR signaling. Mechanistically, miR-998 operates by repressing dCbl, a negative regulator of EGFR signaling. Significantly, dCbl is a critical target of miR-998 since dCbl phenocopies the effects of miR-998 on dE2f1-dependent apoptosis in rbf mutants. Importantly, this regulation is conserved, as the miR-998 seed family member miR-29 repressed c-Cbl, and enhanced MAPK activity and wound healing in mammalian cells. Therefore, the two intronic miRNAs embedded in the dE2f1 gene limit the apoptotic function of dE2f1, but operate in different contexts and act through distinct mechanisms. These results also illustrate that examining an intronic miRNA in the context of its host''s function can be valuable in elucidating the biological function of the miRNA, and provide new information about the regulation of the host gene itself.  相似文献   

6.
Garbe D  Doto JB  Sundaram MV 《Genetics》2004,167(2):663-672
Retinoblastoma (Rb)/E2F complexes repress expression of many genes important for G(1)-to-S transition, but also appear to regulate gene expression at other stages of the cell cycle. In C. elegans, lin-35/Rb and other synthetic Multivulva (SynMuv) group B genes function redundantly with other sets of genes to regulate G(1)/S progression, vulval and pharyngeal differentiation, and other unknown processes required for viability. Here we show that lin-35/Rb, efl-1/E2F, and other SynMuv B genes negatively regulate a component of the anaphase-promoting complex or cyclosome (APC/C). The APC/C is a multisubunit complex that promotes metaphase-to-anaphase progression and G(1) arrest by targeting different substrates for ubiquitination and proteasome-mediated destruction. The C. elegans APC/C gene mat-3/APC8 has been defined by temperature-sensitive embryonic lethal alleles that strongly affect germline meiosis and mitosis but only weakly affect somatic development. We describe severe nonconditional mat-3 alleles and a hypomorphic viable allele (ku233), all of which affect postembryonic cell divisions including those of the vulval lineage. The ku233 lesion is located outside of the mat-3 coding region and reduces mat-3 mRNA expression. Loss-of-function alleles of lin-35/Rb and other SynMuv B genes suppress mat-3(ku233) defects by restoring mat-3 mRNA to wild-type levels. Therefore, Rb/E2F complexes appear to repress mat-3 expression.  相似文献   

7.
8.
The Drosophila caudal homeobox gene is required for definition of the anteroposterior axis and for gut development, and CDX1 and CDX2, human homologs, play crucial roles in the regulation of cell proliferation and differentiation in the intestine. Most studies have indicated tumor suppressor functions of Cdx2, with inhibition of proliferation, while the effects of Cdx1 are more controversial. The influence of Drosophila Caudal on cell proliferation is unknown. In this study, we found three potential Caudal binding sequences in the 5′-flanking region of the Drosophila E2F (DE2F) gene and showed by transient transfection assays that they are involved in Caudal transactivation of the dE2F gene promoter. Analyses with transgenic flies carrying an E2F-lacZ fusion gene, with and without mutation in the Caudal binding site, indicated that the Caudal binding sites are required for expression of dE2F in living flies. Caudal-induced E2F expression was also confirmed with a GAL4-UAS system in living flies. In addition, ectopic expression of Caudal with heat-shock promotion induced melanotic tumors in larvae. These results suggest that Caudal is involved in regulation of proliferation through transactivation of the E2F gene in Drosophila.  相似文献   

9.
Neurotrophins are essential for the development and survival of catecholaminergic neurons. However, the critical pathway for expression of the tyrosine hydroxylase (TH) gene induced by neurotrophin is still unclear. Here we found that Ras/MEK pathway is required for NGF-induced expression of the TH gene in PC12D cells. Induction of TH mRNA by NGF was abolished by pretreatment of the cells with U0126, an inhibitor for MEK1/2, but not with inhibitors for p38 MAPK, PI3K, and PKA. U0126 inhibited TH promoter activity at the same concentration as it acted on ERK1/2 phosphorylation. A dominant-negative form of Ras suppressed the NGF-induced activation of the TH reporter gene, and transient transfection of cells with wild-type Ras and an active form of MEK1 increased the TH promoter activity. The reporter assay also demonstrated that the Ras/MEK pathway acted on both the AP-1-binding motif and the cAMP-responsive element in the TH promoter.  相似文献   

10.
RecQ helicases play an essential role in maintaining genetic integrity in all organisms from Escherichia coli to humans. Defects to these enzymes are responsible for three distinct human diseases: Werner syndrome, Bloom syndrome and Rothmund-Thomson syndrome. All three diseases are characterized by a predisposition to cancer due to increased genomic instability. Previous studies on the effects of non-covalent DNA modifications on the catalytic activity of purified Werner and Bloom DNA helicases have shown that both enzymes have similar sensitivity profiles to these DNA-binding agents and are most strongly inhibited by the minor groove binder distamycin A. In this study, we show that the sensitivity profiles of E. coli RecQ to a number of DNA-binding ligands are different to those observed for WRN and Bloom helicases. These observations may give insights into the differences in molecular mechanisms underlying efficient motor function of RecQ helicases.  相似文献   

11.
We addressed the mechanisms of restoration of cell surface proteinase-activated receptor-1 (PAR-1) by investigating thrombin-activated signaling pathways involved in PAR-1 re-expression in endothelial cells. Exposure of endothelial cells transfected with PAR-1 promoter-luciferase reporter construct to either thrombin or PAR-1 activating peptide increased the steady-state PAR-1 mRNA and reporter activity, respectively. Pretreatment of reporter-transfected endothelial cells with pertussis toxin or co-expression of a minigene encoding 11-amino acid sequence of COOH-terminal Galphai prevented the thrombin-induced increase in reporter activity. Pertussis toxin treatment also prevented thrombin-induced MAPK phosphorylation, indicating a role of Galphai in activating the downstream MAPK pathway. Expression of constitutively active Galphai2 mutant or Gbeta1gamma2 subunits increased reporter activity 3-4-fold in the absence of thrombin stimulation. Co-expression of dominant negative mutants of either Ras or MEK1 with the reporter construct inhibited the thrombin-induced PAR-1 expression, whereas constitutively active forms of either Ras or MEK1 activated PAR-1 expression in the absence of thrombin stimulation. Expression of dominant negative Src kinase or inhibitors of phosphoinositide 3-kinase also prevented the MAPK activation and PAR-1 expression. We conclude that thrombin-induced activation of PAR-1 mediates PAR-1 expression by signaling through Gi1/2 coupled to Src and phosphoinositide 3-kinase, and thereby activating the downstream Ras/MAPK cascade.  相似文献   

12.
E2F plays critical roles in cell cycle progression by regulating the expression of genes involved in nucleotide synthesis, DNA replication, and cell cycle control. We show that the combined loss of E2F1 and E2F2 in mice leads to profound cell-autonomous defects in the hematopoietic development of multiple cell lineages. E2F2 mutant mice show erythroid maturation defects that are comparable with those observed in patients with megaloblastic anemia. Importantly, hematopoietic defects observed in E2F1/E2F2 double-knockout (DKO) mice appear to result from impeded S phase progression in hematopoietic progenitor cells. During DKO B-cell maturation, differentiation beyond the large pre-BII-cell stage is defective, presumably due to failed cell cycle exit, and the cells undergo apoptosis. However, apoptosis appears to be the consequence of failed maturation, not the cause. Despite the accumulation of hematopoietic progenitor cells in S phase, the combined loss of E2F1 and E2F2 results in significantly decreased expression and activities of several E2F target genes including cyclin A2. Our results indicate specific roles for E2F1 and E2F2 in the induction of E2F target genes, which contribute to efficient expansion and maturation of hematopoietic progenitor cells. Thus, E2F1 and E2F2 play essential and redundant roles in the proper coordination of cell cycle progression with differentiation which is necessary for efficient hematopoiesis.  相似文献   

13.
Gene expression changes in response to E2F1 activation   总被引:9,自引:1,他引:8  
  相似文献   

14.
Recently, using a proteomic approach we have identified the corepressor Alien as a novel interacting factor of the cell cycle regulator E2F1. Unclear was whether this interaction influences cell proliferation and endogenous E2F1 target gene expression. Here, we show by chromatin immunoprecipitation (ChIP) that Alien is recruited in vivo to the E2F binding sites present in the E2F1 gene promoter, inhibits the transactivation of E2F1 and represses endogenous E2F1 gene expression. Interestingly, using synchronized cells to assess the expression of Alien profile during cell cycle the levels of endogenous Alien are increased during G1, G1/S and G2 phase. Furthermore, stable transfection of Alien leads to reduction of cell proliferation. Thus, the data suggest that Alien acts as a corepressor for E2F1 and is involved in cell cycle regulation.  相似文献   

15.
AChR-inducing activity (ARIA)/heregulin, a ligand for erbB receptor tyrosine kinases (RTKs), is likely to be one nerve-supplied signal that induces expression of acetylcholine receptor (AChR) genes at the developing neuromuscular junction. Since some RTKs act through Ras and phosphatidylinositol 3-kinase (PI3K), we investigated the role of these pathways in ARIA signaling. Expression of activated Ras or Raf mimicked ARIA-induction of AChR epsilon subunit genes in muscle cells; whereas dominant negative Ras or Raf blocked the effect of ARIA. ARIA rapidly activated erk1 and erk2 and inhibition of both erks also abolished the effect of ARIA. ARIA stimulated association of PI3K with erbB3, expression of an activated PI3K led to ARIA-independent AChR epsilon subunit expression, and inhibition of PI3K abolished the action of ARIA. Thus, synaptic induction of AChR genes requires activation of both Ras/MAPK and PI3K signal transduction pathways.  相似文献   

16.
Ohhata T  Araki R  Fukumura R  Kuroiwa A  Matsuda Y  Tatsumi K  Abe M 《Gene》2000,261(2):251-258
Five members of the RecQ helicase family, RECQL, WRN, BLM, RECQL4 and RECQL5 have been identified in humans. WRN and BLM have been demonstrated to be the responsible genes in Werner and Bloom syndromes, respectively. RECQL4 (RecQ helicase protein-like 4) was identified as a fourth member of the human RecQ helicase family bearing the helicase domain, and it was subsequently shown to be the responsible gene in Rothmund-Thomson syndrome. Here, we isolated mouse RECQL4 and determined the DNA sequence of full-length cDNA as well as the genome organization and chromosome locus. The mouse RECQL4 consists of 3651 base pairs coding 1216 amino acid residues and shares 63.4% of identical and 85.8% of homologous amino acid sequences with human RECQL4. The RECQL4 gene was localized to mouse chromosome 15D3 distal-E1 and rat chromosome 7q34 proximal. They were mapped in the region where the conserved linkage homology has been identified between the two species. Twenty-two exons dispersed over 7 kilo base pairs and all of the acceptor and donor sites for splicing of each exon conformed to the GT/AG rule. Our observations regarding mouse RECQL4 gene will contribute to functional studies on the RECQL4 products.  相似文献   

17.
The Rb/E2F pathway plays a critical role in the control ofcellular proliferation. Here, we report that E2F1, E2F2, and E2F3 make major individual contributions toward the in vivo phenotypic consequences of Rb deficiency. In the developing lens of Rb(-/-) embryos, loss of E2F1, E2F2, or E2F3 reduces the unscheduled proliferation of fiber cells, with the loss of E2F3 having the most pronounced effect. In Rb-deficient retinas, all three E2Fs contribute equally to the ectopic proliferation of postmitotic neuronal cells. In contrast, E2F1 is unique in mediating apoptosis in both Rb(-/-) lenses and retinas. In the central nervous system, loss of E2F1 or E2F3 can almost completely eliminate the ectopic DNA replication and apoptosis observed in Rb(-/-) embryos, and loss of E2F2 partially reduces the unscheduled DNA replication and has no effect on apoptosis. These results provide clear evidence for functional specificity among E2Fs in the control of Rb-dependent proliferation and apoptosis in a tissue-specific manner.  相似文献   

18.
BRD7是采用cDNA代表性差异分析法克隆的一个新的Bromodomain基因,过表达BRD7可抑制鼻咽癌细胞的生长和细胞周期进程,同时发现BRD7基因可以调控Rb/E2F通路的活性.该研究旨在进一步探讨BRD7调控Rb/E2F通路的分子机制.通过蛋白质印迹和RT-PCR实验方法发现,BRD7能够降低Rb的磷酸化水平,抑制cyclinD1、cyclinE的蛋白质表达,上调CDK4抑制子P19的mRNA表达,但对CDK4和CDK2的蛋白质表达没有明显影响;通过荧光素酶实验从转录调控水平进一步证实了BRD7能够明显抑制cyclinD1启动子活性;采用反义核酸技术抑制COS7细胞内源性BRD7的表达后,发现cyclinD1、cyclinE、磷酸化Rb的蛋白质表达水平上调,并且可以促进细胞生长.这些结果表明:BRD7参与调控Rb/E2F信号通路中重要靶分子的表达,抑制Rb/E2F通路的活性,从而阻止细胞周期G1-S期进程,抑制鼻咽癌细胞生长.  相似文献   

19.
20.
Rb and E2F-1 regulate telomerase activity in human cancer cells   总被引:10,自引:0,他引:10  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号