首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Shen N  Guryev O  Rizo J 《Biochemistry》2005,44(4):1089-1096
Protein kinase C (PKC) isozymes and other receptors of diacylglycerol (DAG) bind to this widespread second messenger through their C(1) domains. These alternative DAG receptors include munc13-1, a large neuronal protein that is crucial for DAG-dependent augmentation of neurotransmitter release. Whereas the structures of several PKC C(1) domains have been determined and have been shown to require little conformational changes for ligand binding, it is unclear whether the C(1) domains from other DAG receptors contain specific structural features with key functional significance. To gain insight into this question, we have determined the three-dimensional structure in solution of the munc13-1 C(1) domain using NMR spectroscopy. The overall structure includes two beta-sheets, a short C-terminal alpha-helix, and two Zn(2+)-binding sites, resembling the structures of PKC C(1) domains. However, the munc13-1 C(1) domain exhibits striking structural differences with the PKC C(1) domains in the ligand-binding site. These differences result in occlusion of the binding site of the munc13-1 C(1) domain by a conserved tryptophan side chain that in PKCs adopts a completely different orientation. As a consequence, the munc13-1 C(1) domain requires a considerable conformational change for ligand binding. This structural distinction is expected to decrease the DAG affinity of munc13-1 compared to that of PKCs, and is likely to be critical for munc13-1 function. On the basis of these results, we propose that augmentation of neurotransmitter release may be activated at higher DAG levels than PKCs as a potential mechanism for uncoupling augmentation of release from the multitude of other signaling processes mediated by DAG.  相似文献   

2.
N E Ward  C A O'Brian 《Biochemistry》1992,31(25):5905-5911
We recently reported that autophosphorylated protein kinase C (PKC) has an intrinsic Ca(2+)- and phospholipid-dependent ATPase activity and that the ATPase and histone kinase activities of PKC have similar metal-ion cofactor requirements and Km,app(ATP) values. We hypothesized that the intrinsic ATPase activity of PKC may represent the bond-breaking step of its protein kinase activity. The rate of the ATPase reaction is several times slower than the histone kinase reaction rate. At subsaturating concentrations, various peptide and protein substrates stimulate the ATPase reaction by as much as 1.5-fold. In contrast, non-phosphorylatable substrate analogs are not stimulatory. These observations support a mechanism of PKC catalysis in which the productive binding of phosphoacceptor substrates enhances the rate of phosphodonor substrate (ATP) hydrolysis at the active site of PKC. However, this mechanism contains an assumption that the ATPase activity of PKC is catalyzed at the active site. In fact, sequence analysis indicates that PKC contains a potential second nucleotide binding site outside of its active site. In this report, we provide a detailed analysis of the relationship between the active site of PKC and the intrinsic ATPase activity of the enzyme. We show that the regulatory and catalytic properties of the ATPase reactions of three PKC isozymes are similar, despite critical differences among the isozymes in their consensus sequences for the potential non-active-site nucleotide binding site in their catalytic domains. We also show that the ATPase and histone kinase reactions of each isozyme have similar Km,app(ATP) values.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The down-regulation or cellular depletion of protein kinase C (PKC) attendant to prolonged activation by phorbol esters is a widely described property of this key family of signaling enzymes. However, neither the mechanism of down-regulation nor whether this mechanism occurs following stimulation by physiological agonists is known. Here we show that the peptidyl-prolyl isomerase Pin1 provides a timer for the lifetime of conventional PKC isozymes, converting the enzymes into a species that can be dephosphorylated and ubiquitinated following activation induced by either phorbol esters or natural agonists. The regulation by Pin1 requires both the catalytic activity of the isomerase and the presence of a Pro immediately following the phosphorylated Thr of the turn motif phosphorylation site, one of two C-terminal sites that is phosphorylated during the maturation of PKC isozymes. Furthermore, the second C-terminal phosphorylation site, the hydrophobic motif, docks Pin1 to PKC. Our data are consistent with a model in which Pin1 binds the hydrophobic motif of conventional PKC isozymes to catalyze the isomerization of the phospho-Thr-Pro peptide bond at the turn motif, thus converting these PKC isozymes into species that can be efficiently down-regulated following activation.  相似文献   

4.
Protein kinase C (PKC) isozymes comprise a family of related enzymes that play a central role in many intracellular eukaryotic signaling events. Isozyme specificity is mediated by association of each PKC isozyme with specific anchoring proteins, termed RACKs. The C2 domain of betaPKC contains at least part of the RACK-binding sites. Because the C2 domain contains also a RACK-like sequence (termed pseudo-RACK), it was proposed that this pseudo-RACK site mediates intramolecular interaction with one of the RACK-binding sites in the C2 domain itself, stabilizing the inactive conformation of betaPKC. BetaPKC depends on calcium for its activation, and the C2 domain contains the calcium-binding sites. The x-ray structure of the C2 domain of betaPKC shows that three Ca(2+) ions can be coordinated by two opposing loops at one end of the domain. Starting from this x-ray structure, we have performed molecular dynamics (MD) calculations on the C2 domain of betaPKC bound to three Ca(2+) ions, to two Ca(2+) ions, and in the Ca(2+)-free state, in order to analyze the effect of calcium on the RACK-binding sites and the pseudo-RACK sites, as well as on the loops that constitute the binding site for the Ca(2+) ions. The results show that calcium stabilizes the beta-sandwich structure of the C2 domain and thus affects two of the three RACK-binding sites within the C2 domain. Also, the interactions between the third RACK-binding site and the pseudo-RACK site are not notably modified by the removal of Ca(2+) ions. On that basis, we predict that the pseudo-RACK site within the C2 domain masks a RACK-binding site in another domain of betaPKC, possibly the V5 domain. Finally, the MD modeling shows that two Ca(2+) ions are able to interact with two molecules of O-phospho-l-serine. These data suggest that Ca(2+) ions may be directly involved in PKC binding to phosphatidylserine, an acidic lipid located exclusively on the cytoplasmic face of membranes, that is required for PKC activation.  相似文献   

5.
6.
Conventional and novel protein kinase C (PKC) isozymes contain two cysteine-rich C1 domains (C1A and C1B), both of which are candidate phorbol-12,13-dibutyrate (PDBu) binding sites. We previously synthesized C1 peptides (of approximately 50 residues) corresponding to all PKC isozymes and measured their PDBu binding affinity. While many of these peptide receptors exhibited PDBu affinities comparable to the respective complete isozyme, some of the C1A peptides could not be used because they undergo temperature dependent inactivation. This problem was however eliminated by 4 degrees C incubation or elongation of the 50-mer C1 peptides at both N- and C-termini to increase their folding efficiency and stability. These findings enabled us to determine the K(d)'s of PDBu for all PKC C1 peptides (except for theta-C1A) and establish the value of these peptides as readily available, stable, and easily handled surrogates of the individual isozymes. The resultant C1 peptide receptor library can be used to screen for new ligands with PKC isozyme and importantly C1 domain selectivity. Most of the C1 peptide receptors showed strong PDBu binding affinities with K(d)'s in the nanomolar range (0.45-7.4 nM). Two peptides (delta-C1A and theta-C1A) bound PDBu over 100-fold less tightly. To identify the residues that contribute to this affinity difference, several mutants of delta-C1A and theta-C1A were synthesized. Both the G9K mutant of delta-C1A and the P9K mutant of theta-C1A showed K(d)'s of 2-3 nM. This approach provides a useful procedure to determine the role of each C1 domain of the PKC isozymes by point mutation.  相似文献   

7.
Protein kinase C (PKC) isozymes comprise a family of cytosolic enzymes that translocate to different intracellular sites on activation. We have recently characterized at least two intracellular receptor proteins for PKC (termed RACKs for receptors for activated C-kinase) in the Triton-insoluble material of the particulate fraction from neonatal rat heart. Here, we identify a sequence that appears to resemble the PKC binding site on these RACKs. A peptide (peptide I) with the sequence KGDYEKILVALCGGN bound PKC, and binding was markedly increased in the presence of PKC activators. Furthermore, peptide I inhibited PKC binding to RACKs in a dose-dependent manner. These data suggest that these RACKs have a common PKC binding sequence. Since peptide I inhibited PKC binding to RACKs in vitro, it may be a useful tool to inhibit PKC translocation and subsequent function in vivo.  相似文献   

8.
Protein kinase C (PKC) isozymes are the paradigmatic effectors of lipid signaling. PKCs translocate to cell membranes and are allosterically activated upon binding of the lipid diacylglycerol to their C1A and C1B domains. The crystal structure of full-length protein kinase C βII was determined at 4.0 ?, revealing the conformation of an unexpected intermediate in the activation pathway. Here, the kinase active site is accessible to substrate, yet the conformation of the active site corresponds to a low-activity state because the ATP-binding side chain of Phe629 of the conserved NFD motif is displaced. The C1B domain clamps the NFD helix in a low-activity conformation, which is reversed upon membrane binding. A low-resolution solution structure of the closed conformation of PKCβII was derived from small-angle X-ray scattering. Together, these results show how PKCβII is allosterically regulated in two steps, with the second step defining a novel protein kinase regulatory mechanism.  相似文献   

9.
Designed bryostatin analogues are assayed for binding affinity to individual cysteine rich domains of several protein kinase C (PKC) isozymes. These analogues exhibit significant selectivity for the PKCdelta-C1B peptide in terms of absolute affinity and the PKCdelta-C1A peptide in terms of relative affinity when compared to phorbol-12,13-dibutyrate.  相似文献   

10.
ROCK or Rho-associated kinase, a serine/threonine kinase, is an effector of Rho-dependent signaling and is involved in actin-cytoskeleton assembly and cell motility and contraction. The ROCK protein consists of several domains: an N-terminal region, a kinase catalytic domain, a coiled-coil domain containing a RhoA binding site, and a pleckstrin homology domain. The C-terminal region of ROCK binds to and inhibits the kinase catalytic domains, and this inhibition is reversed by binding RhoA, a small GTPase. Here we present the structure of the N-terminal region and the kinase domain. In our structure, two N-terminal regions interact to form a dimerization domain linking two kinase domains together. This spatial arrangement presents the kinase active sites and regulatory sequences on a common face affording the possibility of both kinases simultaneously interacting with a dimeric inhibitory domain or with a dimeric substrate. The kinase domain adopts a catalytically competent conformation; however, no phosphorylation of active site residues is observed in the structure. We also determined the structures of ROCK bound to four different ATP-competitive small molecule inhibitors (Y-27632, fasudil, hydroxyfasudil, and H-1152P). Each of these compounds binds with reduced affinity to cAMP-dependent kinase (PKA), a highly homologous kinase. Subtle differences exist between the ROCK- and PKA-bound conformations of the inhibitors that suggest that interactions with a single amino acid of the active site (Ala215 in ROCK and Thr183 in PKA) determine the relative selectivity of these compounds. Hydroxyfasudil, a metabolite of fasudil, may be selective for ROCK over PKA through a reversed binding orientation.  相似文献   

11.
As the key mediators of eukaryotic signal transduction, the protein kinases often cause disease, and in particular cancer, when disregulated. Appropriately selective protein kinase inhibitors are sought after as research tools and as therapeutic drugs; several have already proven valuable in clinical use. The AGC subfamily protein kinase C (PKC) was identified early as a cause of cancer, leading to the discovery of a variety of PKC inhibitors. Despite its importance and early discovery, no crystal structure for PKC has yet been reported. Therefore, we have co-crystallized PKC inhibitor bisindolyl maleimide 2 (BIM2) with PKA variants to study its binding interactions. BIM2 co-crystallized as an asymmetric pair of kinase-inhibitor complexes. In this asymmetric unit, the two kinase domains have different lobe configurations, and two different inhibitor conformers bind in different orientations. One kinase molecule (A) is partially open with respect to the catalytic conformation, the other (B) represents the most open conformation of PKA reported so far. In monomer A, the BIM2 inhibitor binds tightly via an induced fit in the ATP pocket. The indole moieties are rotated out of the plane with respect to the chemically related but planar inhibitor staurosporine. In molecule B a different conformer of BIM2 binds in a reversed orientation relative to the equivalent maleimide atoms in molecule A. Also, a critical active site salt bridge is disrupted, usually indicating the induction of an inactive conformation. Molecular modeling of the clinical phase III PKC inhibitor LY333531 into the electron density of BIM2 reveals the probable binding mechanism and explains selectivity properties of the inhibitor.  相似文献   

12.
Calphostin-c inhibits protein kinase C (PKC) isoenzymes by covalent modification of the lipid binding regulatory domain. Exposure of cells to calphostin-c elicits PKC independent effects including disruption of intracellular transport, growth inhibition, and stimulation of apoptosis suggesting actions at additional targets. Phospholipase D (PLD) enzymes are targets for activation by PKC. We have investigated the PKC isoenzyme selectivity for activation of two mammalian PLD enzymes, PLD1 and PLD2, by PKC. We examined the sensitivity of this process to widely used PKC inhibitors and report the surprising finding that calphostin-c is a potent direct inhibitor of PLD1 and PLD2. In vitro, calphostin-c inhibits activity of both PLD1 and PLD2 with an IC(50) of approximately 100 nM. Inhibition is not overcome by protein and lipid activators of these enzymes and does not involve blockade of phosphatidylinositol 4,5-bisphosphate-dependent PLD binding to substrate containing liposomes. Studies using a series of deletion and point mutants of the enzymes suggest that calphostin-c targets the PLD catalytic domain. Inhibition of PLD by calphostin-c in vitro involves stable and apparently irreversible modification of the enzyme. Activity of both PLD1 and PLD2 can be inhibited by calphostin-c treatment of intact cells in a manner that is independent of upstream actions of PKC. Our results suggest that inhibition of PLD1 and PLD2 may explain some of the PKC-independent effects of calphostin-c observed when the compound is applied to intact cells.  相似文献   

13.
Protein kinase C (PKC) family members are allosterically activated following membrane recruitment by specific membrane-targeting modules. Conventional PKC isozymes are recruited to membranes by two such modules: a C1 domain, which binds diacylglycerol (DAG), and a C2 domain, which is a Ca2+-triggered phospholipid-binding module. In contrast, novel PKC isozymes respond only to DAG, despite the presence of a C2 domain. Here, we address the molecular mechanism of membrane recruitment of the novel isozyme PKCdelta. We show that PKCdelta and a conventional isozyme, PKCbetaII, bind membranes with comparable affinities. However, dissection of the contribution of individual domains to this binding revealed that, although the C2 domain is a major determinant in driving the interaction of PKCbetaII with membranes, the C2 domain of PKCdelta does not bind membranes. Instead, the C1B domain is the determinant that drives the interaction of PKCdelta with membranes. The C2 domain also does not play any detectable role in the activity or subcellular location of PKCdelta in cells; in vivo imaging studies revealed that deletion of the C2 domain does not affect the stimulus-dependent translocation or activity of PKCdelta. Thus, the increased affinity of the C1 domain of PKCdelta allows this isozyme to respond to DAG alone, whereas conventional PKC isozymes require the coordinated action of Ca2+ binding to the C2 domain and DAG binding to the C1 domain for activation.  相似文献   

14.
The animal cell polarity regulator Par-3 recruits the Par complex (consisting of Par-6 and atypical PKC, aPKC) to specific sites on the cell membrane. Although numerous physical interactions have been reported between Par-3 and the Par complex, it is unclear how each of these interactions contributes to the overall binding. Using a purified, intact Par complex and a quantitative binding assay, here, we found that the energy required for this interaction is provided by the second and third PDZ protein interaction domains of Par-3. We show that both Par-3 PDZ domains bind to the PDZ-binding motif of aPKC in the Par complex, with additional binding energy contributed from the adjacent catalytic domain of aPKC. In addition to highlighting the role of Par-3 PDZ domain interactions with the aPKC kinase domain and PDZ-binding motif in stabilizing Par-3–Par complex assembly, our results indicate that each Par-3 molecule can potentially recruit two Par complexes to the membrane during cell polarization. These results provide new insights into the energetic determinants and structural stoichiometry of the Par-3–Par complex assembly.  相似文献   

15.
The nonstructural protein 3 (NS3) of hepatitis C virus (HCV) inhibits the nuclear transport and the enzymatic activity of the catalytic subunit of protein kinase A. This inhibition is mediated by an arginine-rich domain localized between amino acids 1487-1500 of the HCV polyprotein. The data presented here indicate that the arginine-rich domain, when embedded in recombinant fragments of NS3, interacts with the catalytic site of protein kinase C (PKC) and inhibits the phosphorylation mediated by this enzyme in vitro and in vivo. Furthermore, a direct binding of PKC to the NS3 fragments leads to an inhibition of the free shuttling of the kinase between the cytoplasm and the particulate fraction. In contrast, a peptide corresponding to the arginine-rich domain (HCV (1487-1500)), despite also being a PKC inhibitor, did not influence the PKC shuttling process and was transported to the particulate fraction by the translocating kinase upon activation with tetradecanoylphorbol-13-acetate. Using the tetradecanoylphorbol-13-acetate -stimulated respiratory burst of NS3-introduced neutrophils as a model system, we could demonstrate that NS3 is able to block PKC-mediated functions within intact cells. Our data support the possibility that NS3 disrupts the PKC-mediated signal transduction.  相似文献   

16.
Angiotensin I-converting enzyme (ACE), one of the central components of the renin-angiotensin system, is a key therapeutic target for the treatment of hypertension and cardiovascular disorders. Human somatic ACE (sACE) has two homologous domains (N and C). The N- and C-domain catalytic sites have different activities toward various substrates. Moreover, some of the undesirable side effects of the currently available and widely used ACE inhibitors may arise from their targeting both domains leading to defects in other pathways. In addition, structural studies have shown that although both these domains have much in common at the inhibitor binding site, there are significant differences and these are greater at the peptide binding sites than regions distal to the active site. As a model system, we have used an ACE homologue from Drosophila melanogaster (AnCE, a single domain protein with ACE activity) to study ACE inhibitor binding. In an extensive study, we present high-resolution structures for native AnCE and in complex with six known antihypertensive drugs, a novel C-domain sACE specific inhibitor, lisW-S, and two sACE domain-specific phosphinic peptidyl inhibitors, RXPA380 and RXP407 (i.e., nine structures). These structures show detailed binding features of the inhibitors and highlight subtle changes in the orientation of side chains at different binding pockets in the active site in comparison with the active site of N- and C-domains of sACE. This study provides information about the structure-activity relationships that could be utilized for designing new inhibitors with improved domain selectivity for sACE.  相似文献   

17.
A member of the novel protein kinase C (PKC) subfamily, PKC, is an essential component of the T cell synapse and is required for optimal T cell activation and interleukin-2 production. Selective involvement of PKC in TCR signaling makes this enzyme an attractive therapeutic target in T cell-mediated disease processes. In this report we describe the crystal structure of the catalytic domain of PKC at 2.0-A resolution. Human recombinant PKC kinase domain was expressed in bacteria as catalytically active phosphorylated enzyme and co-crystallized with its subnanomolar, ATP site inhibitor staurosporine. The structure follows the classic bilobal kinase fold and shows the enzyme in its active conformation and phosphorylated state. Inhibitory interactions between conserved features of staurosporine and the ATP-binding cleft are accompanied by closing of the glycine-rich loop, which also maintains an inhibitory arrangement by blocking the phosphate recognition subsite. The two major phosphorylation sites, Thr-538 in the activation loop and Ser-695 in the hydrophobic motif, are both occupied in the structure, playing key roles in stabilizing active conformation of the enzyme and indicative of PKC autocatalytic phosphorylation and activation during bacterial expression. The PKC-staurosporine complex represents the first kinase domain crystal structure of any PKC isotypes to be determined and as such should provide valuable insight into PKC specificity and into rational drug design strategies for PKC selective leads.  相似文献   

18.
cDNA of bovine cGMP-dependent protein kinase (cGMP kinase) isozymes I alpha and I beta differ only in their amino-terminal domains (amino acids 1-89 and 1-104, respectively). Each recombinant isozyme (rI alpha and rI beta) was transiently expressed in COS-7 cells and its properties were compared with the cGMP kinase isozymes P-I and P-II purified from bovine trachea. The subunit of P-I, P-II, rI alpha and rI beta had a molecular mass of about 75 kDa. rI alpha and rI beta had S20,W values of 7.6 and 7.2, respectively, indicating that they were present as dimeric holoenzymes. Immunostaining with specific antibodies showed that P-I and rI alpha, and P-II and rI beta, were immunologically indistinguishable. P-I, P-II, rI alpha and rI beta had the same catalytic activity. However, rI alpha and rI beta were half-maximally activated at 0.1 microM and 1.3 microM cGMP, and 0.3 microM and 12 microM 8-bromoguanosine 3',5'-(cyclic)phosphate (Br8-cGMP), respectively. P-I and P-II had a similar shift in their apparent KA values. P-I and rI alpha bound 2 mol cGMP/mol subunit to high-affinity (site 1) and low-affinity (site 2) cGMP-binding sites. The exchange rates were 0.005-0.009 min-1 for site 1 and 3.7 min-1 for site 2. In contrast, P-II and rI beta bound and rI beta bound 2 mol cGMP/mol enzyme subunit at only two low-affinity binding sites (site 2) with k-1 values of 0.92 min-1 and 4.8 min-1. These results suggest that a change from the I alpha amino-terminal domain to that of I beta increases the apparent KA value for cGMP 10-fold by altering the binding properties of binding site 1. The differential expression of the cGMP kinase isozymes could be an important mechanism in vivo to dampen the effect of long-term elevation of cGMP level.  相似文献   

19.
Benzolactone-V8 (4) is a lactone analogue of the artificial tumor promoter benzolactam-V8 (1). To investigate the effect of hydrophobic substituents at positions 7 and 15 of 4 on binding selectivity for protein kinase C (PKC) isozymes, 7- and 15-decylbenzolactone-V8 (7, 8) were synthesized and their binding affinities for synthetic PKC isozyme C1 peptides were examined. Compound 8 showed moderate selectivity for novel PKC isozymes similar to 9-decylbenzolactone-V8 (5), while 7 was less selective. Compounds 7 and 8 showed no significant selectivity among novel PKC isozymes unlike 8-decylbenzolactone-V8 (6). These results indicate that the introduction of a hydrophobic substituent at position 8 of 4 is most effective in the development of PKC epsilon- and PKCeta-selective binders.  相似文献   

20.
The oxidant mitogen/tumor promoter, periodate, was used to selectively modify either the regulatory domain or the catalytic domain of protein kinase C (PKC) to induce oxidative activation or inactivation of PKC, respectively. Periodate, at micromolar concentrations, modified the regulatory domain of PKC as determined by the loss of ability to stimulate kinase activity by Ca2+/phospholipid, and also by the loss of phorbol ester binding. This modification resulted in an increase in Ca2+/phospholipid-independent kinase activity (oxidative activation). However, at higher concentrations (greater than 100 microM) periodate also modified the catalytic domain, resulting in complete inactivation of PKC. The oxidative modification induced by low periodate concentrations (less than 0.5 mM) was completely reversed by a brief treatment with 2 mM dithiothreitol. In this aspect, the modification induced by periodate was different from that of the previously reported irreversible modification of PKC induced by H2O2. However, the inactivation of PKC induced by periodate at concentrations greater than 1 mM was not reversed by dithiothreitol. Among the phospholipids and ligands of the regulatory domain tested, only phosphatidylserine protected the regulatory domain from oxidative modification. In the presence of phosphatidylserine, the catalytic site was selectively modified by periodate, resulting in formation of a form of PKC that exhibited phorbol ester binding but not kinase activity. Both reversible and irreversible oxidative activation and inactivation of PKC also were observed in intact cells treated with periodate. Taken together these results suggest that periodate, by virtue of having a tetrahedral structure, binds to the phosphate-binding regions present within the phosphatidylserine-binding site of the regulatory domain and the ATP-binding site of the catalytic domain, and modifies the vicinal thiols present within these sites. This results in the formation of intramolecular disulfide bridge(s) within the regulatory domain or catalytic domain leading to either reversible activation or inactivation of PKC, respectively. Thus, oxidant mitogen/tumor promoters such as periodate may be able to bypass normal transmembrane signalling systems to directly activate pathways involved in cellular regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号