首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The p53 tumor suppressor is recognized as a promising target for anti-cancer therapies. We previously reported that protoporphyrin IX (PpIX) disrupts the p53/murine double minute 2 (MDM2) complex and leads to p53 accumulation and activation of apoptosis in HCT 116 cells. Here we show the direct binding of PpIX to the N-terminal domain of p53. Furthermore, we addressed the induction of apoptosis in HCT 116 p53-null cells by PpIX and revealed interactions between PpIX and p73. We propose that PpIX disrupts the p53/MDM2 or MDMX and p73/MDM2 complexes and thereby activates the p53- or p73-dependent cancer cell death.  相似文献   

2.
3.
4.
5.
6.
The goal of cancer chemotherapy to induce multi-directional apoptosis as targeting a single pathway is unable to decrease all the downstream effect arises from crosstalk. Present study reports that Withanolide D (WithaD), a steroidal lactone isolated from Withania somnifera, induced cellular apoptosis in which mitochondria and p53 were intricately involved. In MOLT-3 and HCT116p53+/+ cells, WithaD induced crosstalk between intrinsic and extrinsic signaling through Bid, whereas in K562 and HCT116p53-/- cells, only intrinsic pathway was activated where Bid remain unaltered. WithaD showed pronounced activation of p53 in cancer cells. Moreover, lowered apoptogenic effect of HCT116p53-/- over HCT116p53+/+ established a strong correlation between WithaD-mediated apoptosis and p53. WithaD induced Bax and Bak upregulation in HCT116p53+/+, whereas increase only Bak expression in HCT116p53-/- cells, which was coordinated with augmented p53 expression. p53 inhibition substantially reduced Bax level and failed to inhibit Bak upregulation in HCT116p53+/+ cells confirming p53-dependent Bax and p53-independent Bak activation. Additionally, in HCT116p53+/+ cells, combined loss of Bax and Bak (HCT116Bax-Bak-) reduced WithaD-induced apoptosis and completely blocked cytochrome c release whereas single loss of Bax or Bak (HCT116Bax-Bak+/HCT116Bax+Bak-) was only marginally effective after WithaD treatment. In HCT116p53-/- cells, though Bax translocation to mitochondria was abrogated, Bak oligomerization helped the cells to release cytochrome c even before the disruption of mitochondrial membrane potential. WithaD also showed in vitro growth-inhibitory activity against an array of p53 wild type and null cancer cells and K562 xenograft in vivo. Taken together, WithaD elicited apoptosis in malignant cells through Bax/Bak dependent pathway in p53-wild type cells, whereas Bak compensated against loss of Bax in p53-null cells.  相似文献   

7.
8.
9.
10.
Tumor suppressor p53 plays a critical role in cellular responses, such as cell cycle arrest and apoptosis following DNA damage. DNA damage-induced cell death can be mediated by a p53-dependent or p53-independent pathway. Although p53-mediated apoptosis has been well documented, little is known about the signaling components of p53-independent cell death. Here we report that the death domain kinase, RIP (receptor-interacting protein), is important for DNA damage-induced, p53-independent cell death. DNA damage induces cell death in both wild-type and p53-/- mouse embryonic fibroblast cells. We found that RIP-/- mouse embryonic fibroblast cells, which have a mutant form of the p53 protein, are resistant to DNA damage-induced cell death. The reconstitution of RIP protein expression in RIP-/- cells restored the sensitivity of cells to DNA damage-induced cell death. We also found that RIP mediates this process through activating mitogen-activated protein kinase, JNK1. Furthermore, knocking down the expression of RIP blocked DNA damage-induced cell death in the human colon cancer cell line, p53 null HCT 116. Taken together, our study demonstrates that RIP is one of the critical components involved in mediating DNA damage-induced, p53-independent cell death.  相似文献   

11.
12.
The tumor suppressor p53 is required for the maintenance of genomic integrity following DNA damage. One mechanism by which p53 functions is to induce a block in the transition between the G(1) and S phase of the cell cycle. Previous studies indicate that the Krüppel-like factor 4 (KLF4) gene is activated following DNA damage and that such activation depends on p53. In addition, enforced expression of KLF4 causes G(1)/S arrest. The present study examines the requirement of KLF4 in mediating the p53-dependent cell cycle arrest process in response to DNA damage. We show that the G(1) population of a colon cancer cell line, HCT116, that is null for the p53 alleles (-/-) was abolished following gamma irradiation compared with cells with wild-type p53 (+/+). Conditional expression of KLF4 in irradiated HCT116 p53-/- cells restored the G(1) cell population to a level similar to that seen in irradiated HCT116 p53+/+ cells. Conversely, treatment of HCT116 p53+/+ cells with small interfering RNA (siRNA) specific for KLF4 significantly reduced the number of cells in the G(1) phase following gamma irradiation compared with the untreated control or those treated with a nonspecific siRNA. In each case the increase or decrease in KLF4 level because of conditional induction or siRNA inhibition, respectively, was accompanied by an increase or decrease in the level of p21(WAF1/CIP1). Results of our study indicate that KLF4 is an essential mediator of p53 in controlling G(1)/S progression of the cell cycle following DNA damage.  相似文献   

13.
为研究ASPP2对奥沙利铂诱导的结肠癌细胞系HCT116 p53+/+(野生型)凋亡及周期的影响.利用ASPP2(rAd-ASPP2)及p53腺病毒(rAd-p53)感染HCT116 p53+/+细胞,经奥沙利铂50 μmol/L诱导细胞凋亡及周期改变.Western印迹检测ASPP2及p53的表达水平;MTT法检测ASPP2腺病毒对奥沙利铂诱导的HCT116细胞活性的影响;Calcein/PI吸收试验检测细胞凋亡情况;流式细胞术分析细胞周期分布. 结果显示,ASPP2、p53共同过表达,或者ASPP2单独过表达均能增强奥沙利铂诱导的HCT116 p53+/+细胞增殖抑制,以及S期抑制并伴有细胞凋亡水平的升高;而无奥沙利铂诱导时,ASPP2对HCT116 p53+/+细胞的活性、细胞周期及细胞凋亡水平的影响无统计学意义. 上述结果表明,ASPP2能够增强奥沙利铂诱导HCT116 p53+/+细胞的增殖抑制、细胞周期抑制和细胞凋亡.  相似文献   

14.
Drug resistance to 5-fluorouracil (5-FU) is still a major limitation to its clinical use. In addition, the clinical value of p53 as a predictive marker for 5-FU-based chemotherapy remains a matter of debate. Here, we used HCT116 human colorectal cancer cells expressing wild-type p53 and investigated whether inhibition of Fas expression by interference RNA modulates 5-FU-induced apoptosis. Cells were treated with 5-FU (1, 4 or 8 microM) for 8-48 h. Cell viability was evaluated by trypan blue dye exclusion. Apoptosis was assessed by changes in nuclear morphology and caspase activity. The interference RNA technology was used to silence Fas expression. Caspase activation, p53, Fas, cytochrome c, and Bcl-2 family protein expression was evaluated by immunoblotting. 5-FU was cytotoxic in HCT116 cells (p<0.001). Nuclear fragmentation and caspase-3, -8 and -9 activities were also markedly increased in HCT116 cells after 5-FU (p<0.001). In addition, wild-type p53 and Fas expression were 25- and 4-fold increased (p<0.05). Notably, when interference RNA was used to inhibit Fas, 5-FU-mediated nuclear fragmentation and caspase activity were markedly reduced in HCT116 cells. Finally, western blot analysis of mitochondrial extracts from HCT116 cells exposed to 5-FU showed a 6-fold increase in Bax, together with a 3-fold decrease in cytochrome c (p<0.001). In conclusion, 5-FU exerts its cytotoxic effects, in part, through a p53/Fas-dependent apoptotic pathway that involves Bax translocation and mitochondrial permeabilization.  相似文献   

15.
Tumor suppressor p53: analysis of wild-type and mutant p53 complexes.   总被引:28,自引:7,他引:21       下载免费PDF全文
It has been suggested that the dominant effect of mutant p53 on tumor progression may reflect the mutant protein binding to wild-type p53, with inactivation of suppressor function. To date, evidence for wild-type/mutant p53 complexes involves p53 from different species. To investigate wild-type/mutant p53 complexes in relation to natural tumor progression, we sought to identify intraspecific complexes, using murine p53. The mutant phenotype p53-246(0) was used because this phenotype is immunologically distinct from wild-type p53-246+ and thus permits immunological analysis for wild-type/mutant p53 complexes. The p53 proteins were derived from genetically defined p53 cDNAs expressed in vitro and also from phenotypic variants of p53 expressed in vivo. We found that the mutant p53 phenotype was able to form a complex with the wild type when the two p53 variants were cotranslated. When mixed in their native states (after translation), the wild-type and mutant p53 proteins did not exhibit any binding affinity for each other in vitro. Under identical conditions, complexes of wild-type human and murine p53 proteins were formed. For murine p53, both the wild-type and mutant p53 proteins formed high-molecular-weight complexes when translated in vitro. This oligomerization appeared to involve the carboxyl terminus, since truncated p53 (amino acids 1 to 343) did not form complexes. We suggest that the ability of the mutant p53 phenotype to complex with wild type during cotranslation may contribute to the transforming function of activated mutants of p53 in vivo.  相似文献   

16.
Microtubule-interfering agents are widely used in cancer chemotherapy, and prognostic results vary significantly from tumor to tumor, depending on the p53 status. In preliminary experiments, we compared the expression and phosphorylation profiles of more than 100 protein kinases and protein phosphatases in human colorectal carcinoma cell line HCT116 between p53+/+ and p53-/- cells in response to short term nocodazole treatment through application of Kinetworks immunoblotting screens. Among the proteins tracked, the regulation of the phosphorylation of c-Jun N-terminal kinase (JNK)1/2 at Thr-183/Tyr-185 was the major difference between p53+/+ and p53-/- cells. With the loss of the p53 gene, the levels of phosphorylation of Ser-63 of c-Jun and Thr-183/Tyr-185 of JNK1/2 in p53-/- cells did not increase as markedly as in p53+/+ cells in response to a 1-h treatment with nocodazole or other microtubule-disrupting drugs such as vinblastine and colchicine. Similar observations were also made in MCF-7 and A549 tumor cells, which were rendered p53-deficient by E6 oncoprotein expression. However, arsenate-induced JNK activation in p53-/- cells was preserved. Inhibition of p53 expression by its antisense oligonucleotide also attenuated nocodazole-induced JNK activation in p53+/+ cells. Surprisingly, cotransfection of p53+/+ cells with dominant negative mutants of JNK isoforms and treatment of p53+/+ cells with the JNK inhibitor SP600125 actually further enhanced apoptosis in p53+/+ cells by up to 2-fold in response to nocodazole. These findings indicate that inhibition of p53-mediated JNK1/2 activity in certain tumor cells could serve to enhance the apoptosis-inducing actions of cancer chemotherapeutic agents that disrupt mitotic spindle function.  相似文献   

17.
18.
A synthetic 22-mer peptide (peptide 46) derived from the p53 C-terminal domain can restore the growth suppressor function of mutant p53 proteins in human tumor cells (G. Selivanova et al., Nat. Med. 3:632-638, 1997). Here we demonstrate that peptide 46 binds mutant p53. Peptide 46 binding sites were found within both the core and C-terminal domains of p53. Lys residues within the peptide were critical for both p53 activation and core domain binding. The sequence-specific DNA binding of isolated tumor-derived mutant p53 core domains was restored by a C-terminal polypeptide. Our results indicate that C-terminal peptide binding to the core domain activates p53 through displacement of the negative regulatory C-terminal domain. Furthermore, stabilization of the core domain structure and/or establishment of novel DNA contacts may contribute to the reactivation of mutant p53. These findings should facilitate the design of p53-reactivating drugs for cancer therapy.  相似文献   

19.
Although the N-terminal BOX-I domain of the tumor suppressor protein p53 contains the primary docking site for MDM2, previous studies demonstrated that RNA stabilizes the MDM2.p53 complex using a p53 mutant lacking the BOX-I motif. In vitro assays measuring the specific activity of MDM2 in the ligand-free and RNA-bound state identified a novel MDM2 interaction site in the core domain of p53. As defined using phage-peptide display, the RNA.MDM2 isoform exhibited a notable switch in peptide binding specificity, with enhanced affinity for novel peptide sequences in either p53 or small nuclear ribonucleoprotein-U (snRNP-U) and substantially reduced affinity for the primary p53 binding site in the BOX-I domain. The consensus binding site for the RNA.MDM2 complex within p53 is SGXLLGESXF, which links the S9-S10 beta-sheets flanking the BOX-IV and BOX-V motifs in the core domain and which is a site of reversible conformational flexibility in p53. Mutation of conserved amino acids in the linker at Ser(261) and Leu(264), which bridges the S9-S10 beta-sheets, stimulated p53 activity from reporter templates and increased MDM2-dependent ubiquitination of p53. Furthermore, mutation of the conserved Phe(270) within the S10 beta-sheet resulted in a mutant p53, which binds more stably to RNA.MDM2 complexes in vitro and which is strikingly hyper-ubiquitinated in vivo. Introducing an Ala(19) mutation into the p53(F270A) protein abolished both RNA.MDM2 complex binding and hyper-ubiquitination in vivo, thus indicating that p53(F270A) protein hyper-ubiquitination depends upon MDM2 binding to its primary site in the BOX-I domain. Together, these data identify a novel MDM2 binding interface within the S9-S10 beta-sheet region of p53 that plays a regulatory role in modulating the rate of MDM2-dependent ubiquitination of p53 in cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号