首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have isolated an extragenic suppressor, FAM1-1, which is able to restore respiratory growth to a deletion of the CEM1 gene (mitochondrial beta-keto-acyl synthase). The sequence of the suppressor strongly suggests that it encodes a long-chain fatty acid CoA ligase (fatty-acyl-CoA synthetase). We have also cloned and sequenced the wild-type FAM1 gene, which is devoid of suppressor activity. The comparison of the two sequences shows that the suppressor mutation is an A-->T transversion, which creates a new initiation codon and adds 18 amino acids to the N-terminus of the protein. This extension has all the characteristics of a mitochondrial targeting sequence, whilst the N-terminus of the wild-type protein has none of these characteristics. In vitro mitochondrial import experiments show that the N-terminal half of the suppressor protein, but not of the wild-type, is transported into mitochondria. Thus, we hypothesize that the suppressor acts by changing the subcellular localization of the protein and relocating at least some of the enzyme from the cytosol to the mitochondria. These results support the hypothesis that some form of fatty acid synthesis, specific for the mitochondria, is essential for the function of the organelle.  相似文献   

2.
The nodulation protein NodF of Rhizobium shows 25% identity to acyl carrier protein (ACP) from Escherichia coli (encoded by the gene acpP). However, NodF cannot be functionally replaced by AcpP. We have investigated whether NodF is a substrate for various E. coli enzymes which are involved in the synthesis of fatty acids. NodF is a substrate for the addition of the 4′-phosphopantetheine prosthetic group by holo-ACP synthase. The Km value for NodF is 61 μM, as compared to 2 μM for AcpP. The resulting holo-NodF serves as a substrate for coupling of malonate by malonyl-CoA:ACP transacylase (MCAT) and for coupling of palmitic acid by acyl-ACP synthetase. NodF is not a substrate for β-keto-acyl ACP synthase III (KASIII), which catalyses the initial condensation reaction in fatty acid biosynthesis. A chimeric gene was constructed comprising part of the E.coliacpP gene and part of the nodF gene. Circular dichroism studies of the chimeric AcpP-NodF (residues 1–33 of AcpP fused to amino acids 43–93 of NodF) protein encoded by this gene indicate a similar folding pattern to that of the parental proteins. Enzymatic analysis shows that AcpP-NodF is a substrate for the enzymes holo-ACP synthase, MCAT and acyl-ACP synthetase. Biological complementation studies show that the chimeric AcpP-NodF gene is able functionally to replace NodF in the root nodulation process in Vicia sativa. We therefore conclude that NodF is a specialized acyl carrier protein whose specific features are encoded in the C-terminal region of the protein. The ability to exchange domains between such distantly related proteins without affecting conformation opens exciting possibilities for further mapping of the functional domains of acyl carrier proteins (i. e., their recognition sites for many enzymes). Received: 22 September 1997 / Accepted: 31 October 1997  相似文献   

3.
4.
Membrane lipids of yeast mitochondria have been enriched by growing yeast cells in minimal medium supplemented with specific unsaturated fatty acids as the sole lipid supplement. Using the activity of marker enzymes for the outer (kynurenine hydroxylase) and inner (cytochrome c oxidase and oligomycin-sensitive ATPase) mitochondrial membranes, Arrhenius plots have been constructed using both pro-mitochondria and mitochondria obtained from O2-adapting cells in the presence of a second unsaturated fatty acid (i.e. linoleate (N2) to elaidic (O2)). Transition temperatures which reflect the unsaturated fatty acid enrichment of the new membranes reveal interesting features involved in the mechanism of the assembly of these two mitochondrial membranes. This approach was further enforced with both lipid depletion and mitochondrial protein inhibition studies. Kynurenine hydroxylase which does not require fatty acid for its continued synthesis during aerobiosis seems to be incorporated into the preformed linoleate-anaerobic outer membrane. The newly synthesized activities of inner mitochondrial membrane enzymes on the other hand, appear to integrate their activity into newly formed aerobic-elaidic-rich inner membrane. These latter enzymes show a distinct dependence on fatty acid supplement for their continued synthesis during their aerobic phase. This suggests that O2-dependent proteo-lipid precursors are formed before these enzymes are integrated into their membrane mosaic. Two separate models are proposed to explain these results, one for the lipid-rich outer mitochondrial membrane and another for the protein-rich inner mitochondrial membrane.  相似文献   

5.
The nodulation protein NodF of Rhizobium shows 25% identity to acyl carrier protein (ACP) from Escherichia coli (encoded by the gene acpP). However, NodF cannot be functionally replaced by AcpP. We have investigated whether NodF is a substrate for various E. coli enzymes which are involved in the synthesis of fatty acids. NodF is a substrate for the addition of the 4′-phosphopantetheine prosthetic group by holo-ACP synthase. The Km value for NodF is 61?μM, as compared to 2?μM for AcpP. The resulting holo-NodF serves as a substrate for coupling of malonate by malonyl-CoA:ACP transacylase (MCAT) and for coupling of palmitic acid by acyl-ACP synthetase. NodF is not a substrate for β-keto-acyl ACP synthase III (KASIII), which catalyses the initial condensation reaction in fatty acid biosynthesis. A chimeric gene was constructed comprising part of the E.coliacpP gene and part of the nodF gene. Circular dichroism studies of the chimeric AcpP-NodF (residues 1–33 of AcpP fused to amino acids 43–93 of NodF) protein encoded by this gene indicate a similar folding pattern to that of the parental proteins. Enzymatic analysis shows that AcpP-NodF is a substrate for the enzymes holo-ACP synthase, MCAT and acyl-ACP synthetase. Biological complementation studies show that the chimeric AcpP-NodF gene is able functionally to replace NodF in the root nodulation process in Vicia sativa. We therefore conclude that NodF is a specialized acyl carrier protein whose specific features are encoded in the C-terminal region of the protein. The ability to exchange domains between such distantly related proteins without affecting conformation opens exciting possibilities for further mapping of the functional domains of acyl carrier proteins (i. e., their recognition sites for many enzymes).  相似文献   

6.
Fatty acids in fish can arise from two sources: synthesis de novo from non‐lipid carbon sources within the animal, or directly from dietary lipid. Acetyl‐CoA derived mainly from protein can be converted to saturated fatty acids via the combined action of acetyl‐CoA carboxylase and fatty acid synthetase. The actual rate of fatty acid synthesis de novo is inversely related to the level of lipid in the diet. Freshwater fish can de‐saturate endogenously‐synthesized fatty acids to monounsaturated fatty acids via a A9 desaturase but lack the necessary enzymes for complete de novo synthesis of polyunsaturated fatty acids which must therefore be obtained preformed from the diet. Most freshwater fish species can desaturate and elongate 18:2(n‐6) and 18:3(n‐3) to their C20 and C22 homologues but the pathways involved remain ill‐defined. Cyclooxygenase and lipoxygenase enzymes can convert C20 polyunsaturated fatty acids to a variety of eicosanoid products. The dietary ratio of (n‐3) to (n‐6) polyunsaturated fatty acids influences the pattern of eicosanoids formed. The ß‐oxidation of fatty acids can occur in both mitochondria and peroxisomes but mi‐tochondrial ß‐oxidation is quantitatively more important and can utilise a wide range of fatty acid substrates.  相似文献   

7.
We describe the physiological function of heterologously expressed Mycobacterium tuberculosis InhA during de novo lipoic acid synthesis in yeast (Saccharomyces cerevisiae) mitochondria. InhA, representing 2-trans-enoyl-acyl carrier protein reductase and the target for the front-line antituberculous drug isoniazid, is involved in the activity of dissociative type 2 fatty acid synthase (FASII) that extends associative type 1 fatty acid synthase (FASI)-derived C20 fatty acids to form C60-to-C90 mycolic acids. Mycolic acids are major constituents of the protective layer around the pathogen that contribute to virulence and resistance to certain antimicrobials. Unlike FASI, FASII is thought to be incapable of de novo biosynthesis of fatty acids. Here, the genes for InhA (Rv1484) and four similar proteins (Rv0927c, Rv3485c, Rv3530c, and Rv3559c) were expressed in S. cerevisiae etr1Δ cells lacking mitochondrial 2-trans-enoyl-thioester reductase activity. The phenotype of the yeast mutants includes the inability to produce sufficient levels of lipoic acid, form mitochondrial cytochromes, respire, or grow on nonfermentable carbon sources. Yeast etr1Δ cells expressing mitochondrial InhA were able to respire, grow on glycerol, and produce lipoic acid. Commensurate with a role in mitochondrial de novo fatty acid biosynthesis, InhA could accept in vivo much shorter acyl-thioesters (C4 to C8) than was previously thought (>C12). Moreover, InhA functioned in the absence of AcpM or protein-protein interactions with its native FASII partners KasA, KasB, FabD, and FabH. None of the four proteins similar to InhA complemented the yeast mutant phenotype. We discuss the implications of our findings with reference to lipoic acid synthesis in M. tuberculosis and the potential use of yeast FASII mutants for investigating the physiological function of drug-targeted pathogen enzymes involved in fatty acid biosynthesis.  相似文献   

8.
Following the analysis of transposon Tn5432-induced mutants of Corynebacterium glutamicum ATCC 13032, a gene encoding a protein with a biotin-binding motif was cloned. The DNA sequence of this gene revealed an open reading frame encoding 591 amino acids with a calculated mol. mass of 63.4 kDa. The protein is composed of two domains, an N-terminal biotin carboxylase and a C-terminal biotin-carboxyl-carrier protein, that are highly similar to corresponding subunits from prokaryotic and eukaryotic biotin enzymes. Over 70% identity was found to a protein from Mycobacterium leprae proposed to be part of an acyl-CoA carboxylase. Since it was not possible to inactivate the C. glutamicum gene, the gene most likely encodes a subunit of the essential acetyl-CoA carboxylase, which catalyzes the committed step in fatty acid synthesis. Received: 2 December 1995 / Accepted: 20 May 1996  相似文献   

9.
脂肪酸不仅是细菌细胞膜组分,还是许多生物活性物质的合成原料。不饱和脂肪酸(unsaturated fatty acid, UFA)具有更低的相变温度,是细菌调节细胞膜流动性的重要分子,因此UFA合成途径是重要的抗菌药物筛选靶点。细菌可利用厌氧途径合成UFA,其中模式生物大肠杆菌利用经典的FabA-FabB途径合成UFA,但不同细菌中UFA合成的厌氧途径具有多样性,相关催化酶类也不尽相同;细菌还可以利用需氧途径合成UFA,利用脂肪酸脱饱和酶直接将饱和脂肪酸(saturated fatty acid, SFA)转化为不饱和脂肪酸,而不同脱饱和酶会生成不同结构的UFA,在逆境耐受、致病力等多方面发挥重要作用;细菌还可以利用单加氧酶,将脂肪酸合成途径中癸酰酰基载体蛋白(acyl carrier protein, ACP)转化为顺-3-癸烯酰ACP,并最终合成UFA。细菌脂肪酸合成相关的其他酶类在UFA合成或不同种类UFA调节中也发挥着重要作用。本文系统地总结了细菌UFA合成途径与相关酶类的多样性研究进展,旨在为进一步了解细菌UFA合成机制,并以此为靶点开发抗菌药物等方面提供理论支撑。  相似文献   

10.
11.
Niemann–Pick disease, type C1 (NPC1) is a fatal, autosomal recessive, neurodegenerative disorder caused by mutations in the NPC1 gene. As a result of the genetic defect, there is accumulation of unesterified cholesterol and sphingolipids in the late endosomal/lysosomal system causing both visceral and neurological defects. These manifest clinically as hepatosplenomegaly, liver dysfunction, and neurodegeneration. While significant progress has been made to better understand NPC1, the downstream effects of cholesterol storage and the major mechanisms that drive these pathologies remains less understood. In this study, it is sought to investigate free fatty acid levels in Npc1?/? mice with focus on the polyunsaturated ω‐3 and ω‐6 fatty acids. Since fatty acids are the main constituents of numerous lipids species, a discovery based lipidomic study of liver tissue in Npc1?/? mice is also performed. To this end, alterations in fatty acid synthesis, including the ω‐3 and 6 fatty acids, are reported. Further, alterations in enzymes that regulate the synthesis of ω‐3 and 6 fatty acids are reported. Analysis of the liver lipidome reveals alterations in both storage and membrane lipids including ceramides, fatty acids, phosphatidylcholamines, phosphatidylglycerols, phosphatidylethanolamines, sphingomyelins, and triacylglycerols in Npc1?/? mice at a late stage of disease.  相似文献   

12.
Summary We have cloned three distinct nuclear genes, NAM1, NAM7, and NAM8, which alleviate mitochondrial intron mutations of the cytochrome b and COXI (subunit I of cytochrome oxidase) genes when present on multicopy plasmids. These nuclear genes show no sequence homology to each other and are localized on different chromosomes: NAM1 on chromosome IV, NAM7 on chromosome XIII and NAM8 on chromosome VIII. Sequence analysis of the NAM1 gene shows that it encodes a protein of 440 amino acids with a typical presequence that would target the protein to the mitochondrial matrix. Inactivation of the NAM1 gene by gene transplacement leads to a dramatic reduction of the overall synthesis of mitochondrial protein, and a complete absence of the COXI protein which is the result of a specific block in COXI pre-mRNA splicing. The possible mechanisms by which the NAM1 gene product may function are discussed.  相似文献   

13.
Recent studies have revealed that mitochondria are able to synthesize fatty acids in a malonyl-CoA/acyl carrier protein (ACP)-dependent manner. This pathway resembles bacterial fatty acid synthesis (FAS) type II, which uses discrete, nuclearly encoded proteins. Experimental evidence, obtained mainly through using yeast as a model system, indicates that this pathway is essential for mitochondrial respiratory function. Curiously, the deficiency in mitochondrial FAS cannot be complemented by inclusion of fatty acids in the culture medium or by products of the cytosolic FAS complex. Defects in mitochondrial FAS in yeast result in the inability to grow on nonfermentable carbon sources, the loss of mitochondrial cytochromes a/a3 and b, mitochondrial RNA processing defects, and loss of cellular lipoic acid. Eukaryotic FAS II generates octanoyl-ACP, a substrate for mitochondrial lipoic acid synthase. Endogenous lipoic acid synthesis challenges the hypothesis that lipoic acid can be provided as an exogenously supplied vitamin. Purified eukaryotic FAS II enzymes are catalytically active in vitro using substrates with an acyl chain length of up to 16 carbon atoms. However, with the exception of 3-hydroxymyristoyl-ACP, a component of respiratory complex I in higher eukaryotes, the fate of long-chain fatty acids synthesized by the mitochondrial FAS pathway remains an enigma. The linkage of FAS II genes to published animal models for human disease supports the hypothesis that mitochondrial FAS dysfunction leads to the development of disorders in mammals.  相似文献   

14.
Fatty acid synthesis in plants occurs in plastids, and thus, export for subsequent acyl editing and lipid assembly in the cytosol and endoplasmatic reticulum is required. Yet, the transport mechanism for plastid fatty acids still remains enigmatic. We isolated FAX1 (fatty acid export 1), a novel protein, which inserts into the chloroplast inner envelope by α-helical membrane-spanning domains. Detailed phenotypic and ultrastructural analyses of FAX1 mutants in Arabidopsis thaliana showed that FAX1 function is crucial for biomass production, male fertility and synthesis of fatty acid-derived compounds such as lipids, ketone waxes, or pollen cell wall material. Determination of lipid, fatty acid, and wax contents by mass spectrometry revealed that endoplasmatic reticulum (ER)-derived lipids decreased when FAX1 was missing, but levels of several plastid-produced species increased. FAX1 over-expressing lines showed the opposite behavior, including a pronounced increase of triacyglycerol oils in flowers and leaves. Furthermore, the cuticular layer of stems from fax1 knockout lines was specifically reduced in C29 ketone wax compounds. Differential gene expression in FAX1 mutants as determined by DNA microarray analysis confirmed phenotypes and metabolic imbalances. Since in yeast FAX1 could complement for fatty acid transport, we concluded that FAX1 mediates fatty acid export from plastids. In vertebrates, FAX1 relatives are structurally related, mitochondrial membrane proteins of so-far unknown function. Therefore, this protein family might represent a powerful tool not only to increase lipid/biofuel production in plants but also to explore novel transport systems involved in vertebrate fatty acid and lipid metabolism.  相似文献   

15.
During their rapid maturation period, seeds of Cuphea wrightii A. Gray mainly accumulate medium-chain fatty acids (C8 to C14) in their storage lipids. The rate of lipid deposition (40–50 mg·d–1·(g fresh weight)–1) is fourfold higher than in seeds of Cuphea racemosa (L. f.) Spreng, which accumulate long-chain fatty acids (C16 to C18). Measurements of the key enzymes of fatty-acid synthesis in cell-free extracts of seeds of different maturities from Cuphea wrightii show that malonyl-CoA synthesis may be a triggering factor for the observed high capacity for fatty-acid synthesis. Experiments on the incorporation of [1-14C]acetate into fatty acids by purified plastid preparations from embryos of Cuphea wrightii have demonstrated that the biosynthesis of medium-chain fatty acids (C8 to C14) is localized in the plastid. Thus, in the presence of cofactors for lipid synthesis (ATP, NADPH, NADH, acyl carrier protein, and sn-glycerol-3-phosphate), purified plastid fractions predominantly synthesized free fatty acids, 30% of which were of medium chain length. Transesterification of the freshly synthesized fatty acids to coenzyme A and recombination with the microsomal fraction of the embryo homogenate induced triacylglycerol synthesis. It also stimulated fatty-acid synthesis by a factor 2–3 and increased the relative amount of medium-chain fatty acids bound to triacylglycerols, which corresponded to about 60–80% in this lipid fraction.Abbreviations ACP acyl carrier protein - FW fresh weight This work was supported by the Bundesminister für Forschung und Technologie. The authors thank S. Borchert for her suggestions for plastid preparation.  相似文献   

16.
A mutation at a new locus denotedtsr1 which lies very close to theery1 locus and 21S rRNA gene in mitochondrial DNA ofSaccharomyces cerevisiae, confers conditional respiratory deficiency on cells grown at low temperature, namely 18°. Studies on mitochondria isolated from a strain carrying the mutatedtsr1 locus demonstrate that the rate of mitochondrial protein synthesis is cold-sensitive at 18°. The large subunit of the mitochondrial ribosomes isolated from the mutant strain is unstable during extraction and the isolated ribosomes are shown to be defective in catalyzing the poly U-directed synthesis of polyphenylalanine. It is concluded that thetsr1 locus is involved in the determination of the properties of the large subunit of the mitochondrial ribosome.  相似文献   

17.
The mammalian enzyme involved in the final elongation of de novo fatty acid biosynthesis following the building of fatty acids to 16 carbons by fatty acid synthase has yet to be identified. In the process of searching for genes activated by sterol regulatory element-binding protein 1 (SREBP-1) by using DNA microarray, we identified and characterized a murine cDNA clone that is highly similar to a fatty acyl-CoA elongase gene family such as Cig30, Sscs, and yeast ELOs. Studies on the cells overexpressing the full-length cDNA indicate that the encoded protein, designated fatty acyl-CoA elongase (FACE), has a FACE activity specific for long-chains; C12-C16 saturated- and monosaturated-fatty acids. Hepatic expression of this identified gene was consistently activated in the livers of transgenic mice overexpressing nuclear SREBP-1a, -1c, or -2. FACE mRNA levels are markedly induced in a refed state after fasting in the liver and adipose tissue. This refeeding response is significantly reduced in SREBP-1 deficient mice. Dietary PUFAs caused a profound suppression of this gene expression, which could be restored by SREBP-1c overexpression. Hepatic FACE expression was also highly up-regulated in leptin-deficient ob/ob mice. Hepatic FACE mRNA was markedly increased by administration of a pharmacological agonist of liver X-activated receptor (LXR), a dominant activator for SREBP-1c expression. These data indicated that this elongase is a new member of mammalian lipogenic enzymes regulated by SREBP-1, playing an important role in de novo synthesis of long-chain saturated and monosaturated fatty acids in conjunction with fatty acid synthase and stearoyl-CoA desaturase.  相似文献   

18.
Citrulline (Cit) actions on muscle metabolism remain unclear. Those latter were investigated using a proteomic approach on Tibialis muscles from male Sprague‐Dawley rats. At 23 months of age, rats were either fed ad libitum (AL group) or subjected to dietary restriction for 12 weeks. At the end of the restriction period, one group of rats was euthanized (R group) and two groups were refed for one week with a standard diet supplemented with nonessential amino acids group or Cit (CIT group). Results of the proteomic approach were validated using targeted Western blot analysis and assessment of gene expression of the related genes. Maximal activities of the key enzymes involved in mitochondrial functioning were also determined. Cit supplementation results in a significant increase in the protein expression of the main myofibrillar constituents and of a few enzymes involved in glycogenolysis and glycolysis (CIT vs. AL and R, p < 0.05). Conversely, the expression of oxidative enzymes from Krebs cycle and mitochondrial respiratory chain was significantly decreased (CIT vs. AL, p < 0.05). However, maximal activities of key enzymes of mitochondrial metabolism were not significantly affected, except for complex 1 which presented an increased activity (CIT vs. AL and R, p < 0.05). In conclusion, Cit supplementation increases expression of the main myofibrillar proteins and seems to induce a switch in muscle energy metabolism, from aerobia toward anaerobia.  相似文献   

19.
Gao X  Stumpe M  Feussner I  Kolomiets M 《Planta》2008,227(2):491-503
Lipoxygenases (LOXs) are members of a large enzyme family that catalyze oxygenation of free polyunsaturated fatty acids into diverse hydroperoxide compounds, collectively called oxylipins. Although LOXs have been well studied in dicot species, reports of the genes encoding these enzymes are scarce for monocots, especially maize. Herein, we reported the cloning, characterization and molecular functional analysis of a novel maize LOX gene, ZmLOX6. The ZmLOX6 nucleotide sequence encodes a deduced translation product of 892 amino acids. Phylogenetic analysis showed that ZmLOX6 is distantly related to previously reported 9- or 13-LOXs from maize and other plant species, including rice and Arabidopsis. Although sequence prediction suggested cytoplasmic localization of this protein, ZmLOX6 protein has been reportedly isolated from mesophyll cell chloroplasts, emphasizing the unique features of this protein. Plastidial localization was confirmed by chloroplast uptake experiments with the in vitro translated protein. Analysis of recombinant protein revealed that ZmLOX6 has lost fatty acid hydroperoxide forming activity but 13-LOX-derived fatty acid hydroperoxides were cleaved into odd-chain ω-oxo fatty acids and as yet not identified C5-compound. In line with its reported abundance in mesophyll cells, ZmLOX6 was predominantly expressed in leaf tissue. Northern blot analysis demonstrated that ZmLOX6 was induced by jasmonic acid, but repressed by abscisic acid, salicylic acid and ethylene and was not responsive to wounding or insects. Further, this gene was strongly induced by the fungal pathogen Cochliobolus carbonum during compatible interactions, suggesting that ZmLOX6 may contribute to susceptibility to this pathogen. The potential involvement of ZmLOX6 in maize interactions with pathogens is discussed.  相似文献   

20.
We report the isolation and expression analysis of two cDNAs encoding 3-ketoacyl-acyl carrier protein synthases (KAS) that are involved in the de novo synthesis of fatty acids in plastids of perilla (Perilla frutescens L.). The cDNAs, designated PfFAB1 and PfFAB24, encoded polypeptides with high sequence identities to those of KAS I and KAS II/IV, respectively, of various plants. Genomic Southern blots revealed that there was a single PfFAB1 gene but two PfFAB24 genes in the perilla genome. Of interest is that the expression of both genes was developmentally regulated in seeds. Their mRNA expression patterns in seeds were also discussed in comparison with the profile of fatty acid accumulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号