首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although the biochemical pathways that repair DNA-protein cross-links have not been clearly elucidated, it has been proposed that the partial proteolysis of cross-linked proteins into smaller oligopeptides constitutes an initial step in removal of these lesions by nucleotide excision repair (NER). To test the validity of this repair model, several site-specific DNA-peptide and DNA-protein cross-links were engineered via linkage at (1) an acrolein-derived gamma-hydroxypropanodeoxyguanosine adduct and (2) an apurinic/apyrimidinic site, and the initiation of repair was examined in vitro using recombinant proteins UvrA and UvrB from Bacillus caldotenax and UvrC from Thermotoga maritima. The polypeptides cross-linked to DNA were Lys-Trp-Lys-Lys, Lys-Phe-His-Glu-Lys-His-His-Ser-His-Arg-Gly-Tyr, and the 16 kDa protein, T4 pyrimidine dimer glycosylase/apurinic/apyrimidinic site lyase. For the substrates examined, DNA incision required the coordinated action of all three proteins and occurred at the eighth phosphodiester bond 5' to the lesion. The incision rates for DNA-peptide cross-links were comparable to or greater than that measured on fluorescein-adducted DNA, an excellent substrate for UvrABC. Incision rates were dependent on both the site of covalent attachment on the DNA and the size of the bound peptide. Importantly, incision of a DNA-protein cross-link occurred at a rate approximately 3.5-8-fold slower than the rates observed for DNA-peptide cross-links. Thus, direct evidence has been obtained indicating that (1) DNA-peptide cross-links can be efficiently incised by the NER proteins and (2) DNA-peptide cross-links are preferable substrates for this system relative to DNA-protein cross-links. These data suggest that proteolytic degradation of DNA-protein cross-links may be an important processing step in facilitating NER.  相似文献   

2.
DNA-protein cross-links were detected in several types of mammalian cells in culture when they were exposed to chromate salts. The cell types included human bronchial epithelial cells — the apparent cell type of origin of the malignancies reported in chromate workers. The level of cross-linking was proportional to the concentration of chromate used. These cross-links appeared to be persistent since no removal was seen after 12 h of repair incubation. A low level of DNA single strand breaks (SSB) were also induced after exposure of the cells to chromate but were rejoined after 4 h of repair incubation. The active form of chromium appears to be the trivalent since chromic but not chromate salts induced DNA-protein cross-links in isolated nuclei. Chromic salts also produced cross-linking between DNA and protein in solution while the hexavalent form was inactive. These data imply that chromate crosses the cell membrane, is reduced to the trivalent form and induces stable linkages of DNA to protein.  相似文献   

3.
UvrD (DNA helicase II) has been implicated in DNA replication, DNA recombination, nucleotide excision repair, and methyl-directed mismatch repair. The enzymatic function of UvrD is to translocate along a DNA strand in a 3′ to 5′ direction and unwind duplex DNA utilizing a DNA-dependent ATPase activity. In addition, UvrD interacts with many other proteins involved in the above processes and is hypothesized to facilitate protein turnover, thus promoting further DNA processing. Although UvrD interactions with proteins bound to DNA have significant biological implications, the effects of covalent DNA-protein cross-links on UvrD helicase activity have not been characterized. Herein, we demonstrate that UvrD-catalyzed strand separation was inhibited on a DNA strand to which a 16-kDa protein was covalently bound. Our sequestration studies suggest that the inhibition of UvrD activity is most likely due to a translocation block and not helicase sequestration on the cross-link-containing DNA substrate. In contrast, no inhibition of UvrD-catalyzed strand separation was apparent when the protein was linked to the complementary strand. The latter result is surprising given the earlier observations that the DNA in this covalent complex is severely bent (∼70°), with both DNA strands making multiple contacts with the cross-linked protein. In addition, UvrD was shown to be required for replication of plasmid DNAs containing covalent DNA-protein complexes. Combined, these data suggest a critical role for UvrD in the processing of DNA-protein cross-links.  相似文献   

4.
The production and removal of 254 nm ultraviolet-induced pyrimidine dimers was measured in the DNA of the free-living nematode Turbatrix aceti. Approximately 0.0035 per cent pyrimidine dimers are produced per J/m2. Following a fluence of 100 Jm2, approximately 50 per cent of the dimeric photoproducts were excised within 60 min. The number of pyrimidine dimers excised did not change with increasing U.V. fluence, indicating saturation of the U.V. repair system in T. aceti. The results indicate a highly efficient and selective repair system in Turbatrix aceti for dimeric photoproducts.  相似文献   

5.
Summary We have studied the role of the excision-repair system and the recombination-repair system in the removal of cross-links and monoadducts caused by furocoumarins plus 360 nm radiation in yeast DNA by neutral and alkaline sucrose gradients and by a fluorometric procedure which detects cross-linked DNA molecules. We found that the excision-repair system, represented by the rad3 mutations, is required both for the removal of monoadducts, causing single-strand break formation, and for the removal of cross-links, causing double-strand break formation. The recombination-repair system, represented by the rad51 mutation, is necessary for double-strand break repair following cross-link removal, but it has no role in the repair of monoadducts.It can be concluded that at least some of the same enzymes are used in yeast for both the excision of pyrimidine dimers and the excision of cross-links or monoadducts caused by furocoumarins plus light. The RAD3 and RAD51 repair systems, which act independently in the repair of UV-induced lesions, are part of a single system for the repair of cross-links.  相似文献   

6.
DNA-protein cross-links are generated by both endogenous and exogenous DNA damaging agents, as intermediates during normal DNA metabolism, and during abortive base excision repair. Cross-links are relatively common lesions that are lethal when they block progression of DNA polymerases. DNA-protein cross-links may be broadly categorized into four groups by the DNA and protein chemistries near the cross-link and by the source of the cross-link: DNA-protein cross-links may be found (1) in nicked DNA at the 3' end of one strand (topo I), (2) in nicked DNA at the 5' end of one strand (pol beta), (3) at the 5' ends of both strands adjacent to nicks in close proximity (topo II; Spo 11), and (4) in one strand of duplex DNA (UV irradiation; bifunctional carcinogens and chemotherapeutic agents). Repair mechanisms are reasonably well-defined for groups 1 and 3, and suggested for groups 2 and 4. Our work is focused on the recognition and removal of DNA-protein cross-links in duplex DNA (group 4).  相似文献   

7.
Covalent DNA-protein crosslinks occur in exponentially growing mouse leukemia cells (L1210) after exposure to ionizing radiation. The amount of DNA-protein crosslinks as measured by a filter binding assay is dose dependent upon X irradiation. Although hyperthermia and radiation in combination are synergistic with respect to cell lethality, the combination does not result in an increase of DNA-protein crosslinks when assayed immediately following treatments. Hyperthermia (43 degrees C/15 min) given prior to radiation does not alter the radiation dose dependency of the amount of initial crosslinking. In addition, the amount of DNA-protein crosslinking produced by heat plus radiation is independent of the length of heating the cells at 43 degrees C. The DNA-protein crosslinks produced by 50-Gy X ray alone are removed after 2 hr at 37 degrees C. However, if hyperthermia (43 degrees C/15 min) is given prior to 100-Gy X ray, the removal of DNA-protein crosslinks is delayed until 4.0 hr after radiation. Phospho-serine and phospho-threonine bonds are not produced with either radiation or the combination of hyperthermia plus radiation as judged by the resistance of the bonds to guanidine hydrochloride. However, hyperthermia plus radiation causes an increase in phosphate to nitrogen type bonding. These results show that radiation alone causes covalent DNA-protein crosslinks. Hyperthermia in combination with radiation does not increase the total amount of the crosslinks but delays the removal of the crosslinks and alters the distribution of the types of chemical bonding. These data suggest that the synergistic action on hyperthermia with radiation is more related to the rate of removal and the type of chemical bonding involved in the covalent DNA-protein crosslinks rather than the amount of DNA-protein crosslinks.  相似文献   

8.
We have assessed the effects of two radiomodifying conditions, glutathione (GSH) depletion and hypoxia, on the formation and repair of radiation-induced chromatin damage, specifically DNA-protein cross-links (DPC). As measured by a nitrocellulose filter-binding assay, untreated V79 cells contain a low level of DPC (1-1.5% of the cellular DNA). The background level of DPC is elevated in cells treated with L-buthionine sulfoximine (BSO), in hypoxic cells, and in cells treated with BSO and made hypoxic (2.98%, 2.82%, and 7.71%, respectively). The dose response for production of radiation-induced DPC is approximately 6.0% DNA bound per 100 Gy for cells irradiated in air, and the dose response is not significantly different for BSO-treated cells but increases by a factor of about 1.4 for hypoxic cells and 1.7 for BSO-pretreated hypoxic cells. DPC were also assayed by alkaline elution with or without proteinase K treatment. By this analysis, the yield of DPC appears to be elevated in irradiated hypoxic and irradiated GSH-depleted cells. It is not possible to assay for background DPC alone in unirradiated cells by alkaline elution. Cells not exposed to BSO repair 70-80% of the radiation-induced DPC in 4 h. BSO-treated cells are considerably less efficient in repair of DPC. As analyzed by alkaline elution, GSH depletion had little or no effect on the yield of radiation-induced single-strand breaks (SSB) but slowed their repair. The data suggest that depletion of GSH impairs an enzyme system(s) responsible for the turnover of both background and radiation-induced DPC and that hypoxia elevates both the background level of DPC and the ratio of radiation-induced DPC to SSB.  相似文献   

9.
The effects of nitracrine (1-nitro-9-(3,3-N,N-dimethylaminopropylamino)acridine on DNA of cultured HeLa cells were studied. DNA strand breakage and interstrand cross-linking as well as DNA-protein cross-linking were measured by means of an alkaline elution technique and were compared with the cytotoxic effect of the drug. Interstrand cross-links were not detectable in the concentration range that inhibited cell growth up to 99%. DNA single-strand breaks were found when cells were treated with highly cytotoxic doses of the drug. DNA breakage was not reparable and exhibited a tendency to increase during incubation after drug removal. The only chromatin lesion induced by sublethal doses of nitracrine were DNA-protein cross-links which persisted for 24 h after drug treatment. It is concluded that DNA breaks represent degraded DNA from dying cells, whereas DNA-protein cross-links are specific cellular lesions, which may be responsible for the cell-killing effect of nitracrine.  相似文献   

10.
We investigated the differential repair of DNA lesions induced by bifunctional mitomycin C, monofunctional decarbamoyl mitomycin C and ultraviolet irradiation in normal human, Xeroderma pigmentosum and Fanconi's anemia cells using assays for the survival of clone-forming ability, alkaline sucrose sedimentation and hydroxyapatite chromatography of DNA. Four FA cell lines exhibited about 5 to 15 times higher sensitivity to MC killing, despite normal resistance to u.v. and DMC, than did normal human cells. The XP cells, however, were highly sensitive to u.v. and DMC killings due to their deficiency in excision repair, but the cells unexpectedly had an almost normal capacity for surviving MC and repairing the MC interstrand cross-links.In experiments to determine the sedimentation velocity of the DNA in alkaline sucrose gradients, normal and XP cells showed evidence for single-strand cutting following MC treatment. The sedimentation velocity of the DNA covalently cross-linked by MC in an FA strain was 2.5 times faster than that of the untreated control, and remained unaltered during post-incubation due to the lack of half-excision4 of cross-links. However, FA cells, but not XP cells, had the normal ability to incise DNA with the DMC monoadducts. Hydroxyapatite chromatography revealed the reversibly bihelical property of MC cross-linked DNA after denaturation. Normal and XP cells lost such reversibility during post-MC incubation as the result of cross-link removal with first-order kinetics (half-life = 2 h). The three FA lines studied exhibited two- to eightfold reduced rates of cross-link removal than normal and XP cells, indicating a difference in the repair deficiency of the FA strain. Thus we have been led to conclude that FA cells may have different levels of deficiency in half-excision repair of interstrand cross-links induced by MC, despite having normal mechanisms for repair of u.v.-induced pyrimidine dimers and DMC monoadducts, and vice versa in XP cells.  相似文献   

11.
The effect of ultra-violet (U.V.)-irradiation on DNA replication was studied in a U.V.-resistant, human melanoma cell-line (MM96). Semi-conservative synthesis of DNA was decreased about five-fold by a U.V.-dose of 100 ergs/mm2. The size of DNA fragments synthesized in irradiated cells at short times after U.V. was smaller than those synthesized in unirradiated cells. Elongation of these fragments occurred with time, and 6 hours after irradiation cells synthesized DNA in fragments of the same size as obtained in unirradiated cells. In this post-replication repair process, elongation appeared to involve de novo synthesis and was not inhibited by theophylline.  相似文献   

12.
This study attempted to characterize proteins cross-linked to DNA of Yoshida lymphosarcoma cells treated with methylene dimethanesulfonate (MDMS) and its hydrolytic products formaldehyde (HCHO) and methanesulfonic acid (MSA). MDMS and HCHO treatments produced a similar extent and type of DNA-protein cross-linking in Yoshida lymphosarcoma cells. All five major histones (H1, H2a, H2b, H3, and H4) were among the nuclear proteins cross-linked to DNA. Certain discrete differences were also apparent in these studies. MDMS cross-linked proteins of 29 and 48 kDa to DNA that were not observed following HCHO treatment alone, and HCHO cross-linked a 26-kDa protein to DNA that was not observed following MDMS treatment. Because semicarbazide prevented all MDMS-induced DNA-protein cross-linking, HCHO must be the component responsible for this lesion. The 26-kDa protein has been identified as an H4-H2b dimer. The formation of this dimer is particularly sensitive to MSA release on hydrolysis of MDMS because, in the presence of MSA, HCHO preferentially cross-linked an H2a-H2b dimer and a 48-kDa non-histone protein to DNA. Differences in DNA-protein cross-linking between these two agents are therefore proposed to arise from discrete changes in chromatin structure induced directly by MSA release.  相似文献   

13.
Abstract. A number of physical and chemical agents in the environment have been studied for their ability to induce or alter DNA repair mechanisms in human cells. We have investigated the effects of 60 Hz, 1000 V/cm electric fields on DNA repair in normal human fibroblasts in vitro. an examination was done on the ability of electric fields suspected to cause damage which could be repaired by thymine dimer excision and measurable by the bromodeoxyuridine photolysis assay. the thymine dimer assay with enzyme-sensitive site analysis was used to measure the cells' capacity for removing ultraviolet light (u.v.)-induced pyrimidine dimers; (i) during exposure to electric field 24 hr before U.V. irradiation; (ii) 24 hr after U.V. irradiation; and (iii) up to 48 hr continuously after U.V. irradiation. Cell growth and cell survival following electric field exposure were also studied. Within the limits of these experiments, it was found that exposure to such electric fields did not alter cell growth or survival, and no DNA repair or alteration in DNA excision repair capacity was observed as compared with unexposed control cultures.  相似文献   

14.
15.
DNA-protein cross-linking by ultraviolet radiation was measured in human fibroblasts by an adaptation of the method of DNA alkaline elution. To measure cross-linking, a controlled frequency of DNA single-strand breaks was introduced by exposing the cells to a low dose of X-ray at 0 degrees C prior to analysis by alkaline elution. The effect of prior exposure of the cells to ultraviolet radiation was to reduce the rate and/or extent of DNA elution from X-irradiated cells. This effect was attributed to DNA-protein cross-linking, since the effect was reversed by treatment of the cell lysates with proteinase-K. Cross-linking in normal human fibroblasts occurred immediately after ultraviolet irradiation, prior to the appearance of DNA single-strand breaks due to excision repair. Upon incubation of normal cells after exposure, to ultraviolet radiation, the cross-linking was partially repaired. In xeroderma pigmentosum cells, cross-links appeared as in normal cells, but there was no repair. Instead, the extent of cross-linking appeared to increase upon incubation after ultraviolet irradiation.  相似文献   

16.
P Calsou  P Frit    B Salles 《Nucleic acids research》1992,20(23):6363-6368
During reaction of cis-diamminedichloroplatinum(II) (cis-DDP) with DNA, a number of adducts are formed which may be discriminated by the excision-repair system. An in vitro excision-repair assay with human cell-free extracts has been used to assess the relative repair extent of monofunctional adducts, intrastrand and interstrand cross-links of cis-DDP on plasmid DNA. Preferential removal of cis-DDP 1,2-intrastrand diadducts occurred in the presence of cyanide ions. In conditions where cyanide treatment removed 85% of total platinum adducts while approximately 70% of interstrand cross-links remained in plasmid DNA, no significant variation in repair synthesis by human cell extracts was observed. Then, we constructed three types of plasmid DNA substrates containing mainly either monoadducts, 1,2-intrastrand cross-links or interstrand cross-links lesions. The three plasmid species were modified in order to obtain the same extent of total platinum DNA adducts per plasmid. No DNA repair synthesis was detected with monofunctional adducts during incubation with human whole cell extracts. However, a two-fold increase in repair synthesis was found when the proportion of interstrand cross-links in plasmid DNA was increased by 2-3 fold. These findings suggest that (i) cis-DDP 1,2-intrastrand diadducts are poorly repaired by human cell extracts in vitro, (ii) among other minor lesions potentially cyanide-resistant, cis-DDP interstrand cross-links represent a major lesion contributing to the repair synthesis signal in the in vitro assay. These results could account for the drug efficiency in vivo.  相似文献   

17.
Psoralens produce DNA interstrand cross-links which are thought to be repaired via a sequential excision and recombination mechanism in Escherichia coli. The first round of incision by UvrABC has been characterized: it results in 11-base oligonucleotide cross-linked to an intact DNA strand (Van Houten, B., Gamper, B., Holbrook, S.R., Hearst, J.E., and Sancar, A. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 8077-8081). In the present work, DNA substrates containing 4'-hydroxymethyl-4,5',8-trimethylpsoralen (HMT) cross-links in defined positions are constructed and used to analyze the other steps in repair. It is shown that RecA protein mediates strand transfer past an oligonucleotide cross-linked to a single-stranded DNA circle and that the resulting heteroduplex is a substrate for the UvrABC complex: it excises a double-stranded oligonucleotide which contains the HMT cross-link. It is also found that the first round of UvrABC incision does not lead directly to strand exchange but that an intervening step is needed. That step is carried out in vitro by the 5'-exonuclease activity of DNA polymerase I (pol I) which creates a single-stranded DNA region (a gap) at an incised cross-link such that RecA can initiate strand exchange. Studies using cross-linked oligonucleotides showed that the gap produced by pol I results from the inability of the polymerase to add nucleotides to a 3'-OH end two to three nucleotides away from the furan side of an HMT cross-link. Pol I can, however, extend a 3'-OH end next to the pyrone side of the cross-link. Since UvrABC incises predominantly the furan side of psoralen cross-links in duplex DNA, this discrepancy has important consequences for repair.  相似文献   

18.
Different variants of the comet assay were used to study the genotoxic and cytotoxic properties of the following eight compounds: chloral hydrate, colchicine, hydroquinone, DL-menthol, mitomycin C, sodium iodoacetate, thimerosal and valinomycin. Colchicine, mitomycin C, sodium iodoacetate and thimerosal induced genotoxic effects. The other compounds were found to be inactive. The compounds were tested in the standard comet assay as well as in the all cell comet assay (recovery of floating cells after treatment), designed in our laboratory for adherently-growing cells. This latter procedure proved to be more adequate for the assessment of the cytotoxicity for some of the compounds tested (hydroquinone, DL-menthol, thimerosal, valinomycin). Colchicine was positive in the standard comet assay (3h treatment) and in the all cell comet assay (24h treatment). Sodium iodoacetate and thimerosal were positive in the standard and/or the all cell comet assay. Chloral hydrate, hydroquinone, sodium iodoacetate, mitomycin C and thimerosal were also tested in the modified comet assay using lysed cells. Mitomycin C and thimerosal showed effects in this assay, whereas sodium iodoacetate was inactive. This indicates that it does not induce direct DNA damage. Compounds that are known or suspected to form DNA-DNA cross-links or DNA-protein cross-links (chloral hydrate, hydroquinone, mitomycin C and thimerosal) were checked for their ability to reduce ethyl methanesulfonate (EMS)-induced DNA damage. This mode of action could be demonstrated for mitomycin C only.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号