首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Phosphorus mineralization is chemically coupled with organic matter (OM) decomposition in surface horizons of a mixed-conifer forest soil from the Sierra Nevada, California, and is also affected by the disturbance caused by forest harvesting. Solution13C nuclear magnetic resonance (NMR) spectroscopy of NaOH extracts revealed a decrease of O-alkyl and alkyl-C fractions with increasing degree of decomposition and depth in the soil profile, while carbonyl and aromatic C increased. Solid-state13C-NMR analysis of whole soil samples showed similar trends, except that alkyl C increased with depth. Solution31P-NMR indicated that inorganic P (P1) increased with increasing depth, while organic-P (Po) fractions decreased. Close relationships between P mineralization and litter decomposition were suggested by correlations between P1 and C fractions (r = 0.82, 0.81, –0.87, and –0.76 for carbonyl, aromatic, alkyl and O-alkyl fractions, respectively). Correlations for diester-P and pyrophosphate with O-alkyl (r = 0.63 and 0.84) and inverse correlations with aromatics (r = –0.74 and –0.72) suggest that mineralization of these P fractions coincides with availability of C substrate. A correlation between monoester P and alkyl C (r = 0.63) suggests mineralization is linked to breakdown of structural components of the plant litter. NMR analyses, combined with Hedley-P fractionation, suggest that post-harvest buildup of labile P in decomposed litter increases the potential for leaching of P during the first post-harvest season, but also indicates reduced biological activity that transports P from litter to the mineral soil. Thus, P is temporarily stored in decomposed litter, preventing its fixation by mineral oxides. In the mineral horizons,31P-NMR provides evidence of decline in biologically-available P during the first post-harvest season.  相似文献   

2.
陶宝先  张保华  董杰  刘晨阳 《生态学报》2019,39(15):5564-5572
凋落物分解速率及其温度敏感性Q_(10)能够影响凋落物对土壤的碳归还及其对全球变暖的响应。然而,凋落物有机碳质量对凋落物分解及其温度敏感性的影响研究仍不充分。以黄河三角洲芦苇(Phragmites australi)为例,通过凋落物袋法、室内模拟实验及固态~(13)C核磁共振技术,研究有机碳质量对凋落物分解及其温度敏感性的影响,探讨预测凋落物分解及其温度敏感性的指标。结果表明:(1)随着凋落物分解,易分解碳组分(烷氧碳、双烷氧碳)相对含量逐渐降低,而难分解碳组分(芳香碳)相对含量显著增加,疏水碳/亲水碳、芳香碳/烷氧碳比值逐渐增大,凋落物有机碳更加稳定,凋落物呼吸速率及失重率呈下降趋势。(2)凋落物失重主要受烷基碳、烷氧碳相对含量及C/N的影响,凋落物CO_2累积释放量主要受烷氧碳及双烷氧碳相对含量的影响。羰基碳相对含量可以用来解释Q_(10)的变异。因此,相对于生态化学计量比,烷基碳、烷氧碳、双烷氧碳、羰基碳相对含量是预测凋落物分解及其温度敏感性的敏感性指标。  相似文献   

3.
Accumulation of biomass, the respiration rate, and the contents of total nitrogen and nonstructural carbohydrates were studied for 14 perennial long-rhizome-forming species differing in the type of adaptive strategy. Fast-growing species with well expressed competitive-ruderal properties (CR plants) were characterized by a higher productivity, a better nitrogen status, and more intense respiration than slowly growing stress-tolerant species (S plants). The proportion of rhizomes in the weight of the whole plant varied from 30 to 70% and was higher in S species. In CR species, the respiration rate measured in rhizomes at 20°C was equal on the average to 1 mg CO2/(g dry wt h), which was threefold higher than in S species. In S species, a considerable amount of nitrogen (50%) was present in rhizomes, whereas in CR species, most part of nitrogen (70–80%) was localized in the aboveground organs. The correlation analysis revealed a direct dependence (r = 0.75) between the respiration rate and nitrogen content in leaves; in the rhizomes the correlation between these indices was low (r = 0.39). The content of carbohydrates in the leaves and sink organs, rhizomes, was determined by the type of plant ecological strategy and life duration of their photosynthesizing organs (summergreen, evergreen species). In general, the results obtained demonstrated a close relation between adaptive strategy, ecological confinement, the rhythm of seasonal development, and physiological properties of long-rhizome-forming plants.  相似文献   

4.
We examined a 6‐year record of automated chamber‐based soil CO2 efflux (Fs) and the underlying processes in relation to climate and canopy gas exchange at an AmeriFlux site in a seasonally drought‐stressed pine forest. Interannual variability of Fs was large (CV=17%) with a range of 427 g C m?2 yr?1 around a mean annual Fs of 811 g C m?2 yr?1. On average, 76% of the variation of daily mean Fs could be quantified using an empirical model with year‐specific basal respiration rate that was a linear function of tree basal area increment (BAI) and modulated by a common response to soil temperature and moisture. Interannual variability in Fs could be attributed almost equally to interannual variability in BAI (a proxy for above‐ground productivity) and interannual variability in soil climate. Seasonal total Fs was twice as sensitive to soil moisture variability during the summer months compared with temperature variability during the same period and almost insensitive to the natural range of interannual variability in spring temperatures. A strong seasonality in both root respiration (Rr) and heterotrophic respiration (Rh) was observed with the fraction attributed to Rr steadily increasing from 18% in mid‐March to 50% in early June through early July before dropping rapidly to 10% of Fs by mid‐August. The seasonal pattern in Rr (10‐day averages) was strongly linearly correlated with tree transpiration (r2=0.90, P<0.01) as measured using sap flux techniques and gross ecosystem productivity (GEP, r2=0.83, P<0.01) measured by the eddy‐covariance approach. Rr increased by 0.43 g C m?2 day?1 for every 1 g C m?2 day?1 increase in GEP. The strong linear correlation of Rr to seasonal changes in GEP and transpiration combined with longer‐term interannual variability in the base rate of Fs, as a linear function of BAI (r2=0.64, P=0.06), provides compelling justification for including canopy processes in future models of Fs.  相似文献   

5.
Woody tissue maintenance respiration of four conifers in contrasting climates   总被引:21,自引:0,他引:21  
We estimate maintenance respiration for boles of four temperate conifers (ponderosa pine, western hemlock, red pine, and slash pine) from CO2 efflux measurements in autumn, when construction respiration is low or negligible. Maintenance respiration of stems was linearly related to sapwood volume for all species; at 10°C, respiration per unit sapwood volume ranged from 4.8 to 8.3 mol CO2 m–3 s–1. For all sites combined, respiration increased exponentially with temperature (Q 10 =1.7, r 2=0.78). We estimate that maintenance respiration of aboveground woody tissues of these conifers consumes 52–162 g C m–2 y–1, or 5–13% of net daytime carbon assimilation annually. The fraction of annual net daytime carbon fixation used for stem maintenance respiration increased linearly with the average annual temperature of the site.  相似文献   

6.
We measured CO2 efflux from stems of two tropical wet forest trees, both found in the canopy, but with very different growth habits. The species were Simarouba amara, a fast-growing species associated with gaps in old-growth forest and abundant in secondary forest, and Minquartia guianensis, a slow-growing species tolerant of low-light conditions in old-growth forest. Per unit of bole surface, CO2 efflux averaged 1.24 mol m–2 s–1 for Simarouba and 0.83 mol m–2s–1 for Minquartia. CO2 efflux was highly correlated with annual wood production (r 2=0.65), but only weakly correlated with stem diameter (r 2=0.22). We also partitioned the CO2 efflux into the functional components of construction and maintenance respiration. Construction respiration was estimated from annual stem dry matter production and maintenance respiration by subtracting construction respiration from the instantaneous CO2 flux. Estimated maintenance respiration was linearly related to sapwood volume (39.6 mol m–3s–1 at 24.6° C, r 2=0.58), with no difference in the rate for the two species. Maintenance respiration per unit of sapwood volume for these tropical wet forest trees was roughly twice that of temperate conifers. A model combining construction and maintenance respiration estimated CO2 very well for these species (r 2=0.85). For our sample, maintenance respiration was 54% of the total CO2 efflux for Simarouba and 82% for Minquartia. For our sample, sapwood volume averaged 23% of stem volume when weighted by tree size, or 40% with no size weighting. Using these fractions, and a published estimate of aboveground dry-matter production, we estimate the annual cost of woody tissue respiration for primary forest at La Selva to be 220 or 350 g C m–2 year–1, depending on the assumed sapwood volume. These costs are estimated to be less than 13% of the gross production for the forest.  相似文献   

7.
ABSTRACT

Meaningful learning occurs by relating new information to and revising prior knowledge, making it essential to understand student knowledge before helping them move toward a more scientific understanding. In this study, we characterise prior knowledge about cellular respiration in undergraduate students enrolled in introductory biology by analysing student-constructed concept maps (N = 182) and interviews (N = 9). Students were instructed to create concept maps from a bank of 20 concepts with the purpose of interconnecting the processes of cellular respiration, showing how pools of ATP are generated and used, and identifying where the events of cellular respiration occur. Student maps were analysed for content, quality and organisation of knowledge. Interviews were used to corroborate inferences made from concept maps. Students had a simplified understanding of cellular respiration and its processes as evident by cognitive structures with limited quantities of schemas that were vaguely connected and linearly organised. Furthermore, students had a better understanding of glycolysis than fermentation. Instructors can use these findings to help students build better knowledge of cellular respiration by focusing on incorporating relevant schemas, creating quality connections among schemas, and organising their knowledge of cellular respiration to reflect biological complexity.  相似文献   

8.
Autotrophic respiration may regulate how ecosystem productivity responds to changes in temperature, atmospheric [CO2] and N deposition. Estimates of autotrophic respiration are difficult for forest ecosystems, because of the large amount of biomass, different metabolic rates among tissues, and seasonal variation in respiration rates. We examined spatial and seasonal patterns in autotrophic respiration in a Pinus strobus ecosystem, and hypothesized that seasonal patterns in respiration rates at a common temperature would vary with [N] for fully expanded foliage and fine roots, with photosynthesis for foliage, and with growth for woody tissues (stems, branches, and coarse roots). We also hypothesized that differences in [N] would largely explain differences in maintenance or dormant‐season respiration among tissues. For April–November, mean respiration at 15 °C varied from 1.5 to 2.8 μmol kg?1 s?1 for fully expanded foliage, 1.7–3.0 for growing foliage, 0.8–1.6 for fine roots, 0.6–1.1 (sapwood) for stems, 0.5–1.8 (sapwood) for branches, and 0.2–1.5 (sapwood) for coarse roots. Growing season variation in respiration for foliage produced the prior year was strongly related to [N] (r2 = 0.94), but fine root respiration was not related to [N]. For current‐year needles, respiration did not covary with [N]. Night‐time foliar respiration did not vary in concert with previous‐day photosynthesis for either growing or fully expanded needles. Stem growth explained about one‐third of the seasonal variation in stem respiration (r2 = 0.38), and also variation among trees (r2 = 0.43). We did not determine the cause of seasonal variation in branch and coarse root respiration, but it is unlikely to be directly related to growth, as the pattern of respiration in coarse roots and branches was not synchronized with stem growth. Seasonal variations in temperature‐corrected respiration rates were not synchronized among tissues, except foliage and branches. Spatial variability in dormant‐season respiration rates was significantly related to tissue N content in foliage (r2 = 0.67), stems (r2 = 0.45), coarse roots (r2 = 0.36), and all tissues combined (r2 = 0.83), but not for fine roots and branches. Per unit N, rates for P. strobus varied from 0.22 to 3.4 μmol molN?1 s?1 at 15 °C, comparable to those found for other conifers. Accurate estimates of annual autotrophic respiration should reflect seasonal and spatial variation in respiration rates of individual tissues.  相似文献   

9.
We have studied the binding interactions of biologically important carbohydrates (d-glucose, d-xylose and d-mannose) with the newly synthesized five-coordinate dinuclear copper(II) complex, [Cu2(hpnbpda)(μ-OAc)] (1) and zinc(II) complex, [Zn2(hpnbpda)(μ-OAc)] (2) [H3hpnbpda = N,N′-bis(2-pyridylmethyl)-2-hydroxy-1,3-propanediamine-N,N′-diacetic acid] in aqueous alkaline solution. The complexes 1 and 2 are fully characterized both in solid and solution using different analytical techniques. A geometrical optimization was made of the ligand H3hpnbpda and the complexes 1 and 2 by molecular mechanics (MM+) method in order to establish the stable conformations. All carbohydrates bind to the metal complexes in a 1:1 molar ratio. The binding events have been investigated by a combined approach of FTIR, UV–vis and 13C NMR spectroscopic techniques. UV–vis spectra indicate a significant blue shift of the absorption maximum of complex 1 during carbohydrate coordination highlighting the sugar binding ability of complex 1. The apparent binding constants of the substrate-bound copper(II) complexes have been determined from the UV–vis titration experiments. The binding ability and mode of binding of these sugar substrates with complex 2 are indicated by their characteristic coordination induced shift (CIS) values in 13C NMR spectra for carbon atoms C1, C2, and C3 of sugar substrates.  相似文献   

10.
The root respiration rate often shows an exponential or a linear relationship with temperature under laboratory conditions. However, under intact conditions in the field, the root respiration rates of some tree species decreased around midday despite an increment of the root temperature (Bekku et al. 2009). To clarify the cause of midday depression, we examined the relationships between the intact root respiration and parameters of leaf gas exchange through the simultaneous field measurement of the gas exchange in the leaf and root of Quercus crispula and Chamaecyparis obtusa, which are canopy trees. There were no significant relationships between the root respiration rates (R r) and the parameters of leaf gas exchange in the field. However, in C. obtusa, the relationships between R r and the transpiration rates (E) at 1 h before the measurement of R r were fitted by logarithmic function with a determination coefficient of 0.60–0.89. In the light-manipulation experiments using saplings, R r had significant positive correlations with E at 20 min before the measurement of R r, root temperature (T r), and the photosynthesis (P n) at 20 min before the measurement of R r. We examined which factor, P n or E, affects the root respiration rate through a manipulation experiment using a growth chamber regulating the ambient CO2 concentration and relative humidity independently under constant air temperature and photosynthetic photon flux density. As a result, the root respiration rates changed corresponding to E and not P n. These results suggest that the root respiration rate of trees changes significantly in the daytime and is affected by the leaf transpiration rate as well as the temperature.  相似文献   

11.
This study investigated the relationship between 13C of ecosystem components, soluble plant carbohydrates and the isotopic signature of ecosystem respired CO2 (13CR) during seasonal changes in soil and atmospheric moisture in a beech (Fagus sylvatica L.) forest in the central Apennine mountains, Italy. Decrease in soil moisture and increase in air vapour pressure deficit during summer correlated with substantial increase in 13C of leaf and phloem sap soluble sugars. Increases in 13C of ecosystem respired CO2 were linearly related to increases in phloem sugar 13C (r2=0.99, P0.001) and leaf sugar 13C (r2=0.981, P0.01), indicating that a major proportion of ecosystem respired CO2 was derived from recent assimilates. The slopes of the best-fit lines differed significantly (P0.05), however, and were about 0.86 (SE=0.04) for phloem sugars and about 1.63 (SE=0.16) for leaf sugars. Hence, changes in isotopic signature in phloem sugars were transferred to ecosystem respiration in the beech forest, while leaf sugars, with relatively small seasonal changes in 13C, must have a slower turnover rate or a significant storage component. No significant variation in 13C was observed in bulk dry matter of various plant and ecosystem components (including leaves, bark, wood, litter and soil organics). The apparent coupling between the 13C of soluble sugars and ecosystem respiration was associated with large apparent isotopic disequilibria. Values of 13CR were consistently more depleted by about 4 relative to phloem sugars, and by about 2 compared to leaf sugars. Since no combination of the measured pools could produce the observed 13CR signal over the entire season, a significant isotopic discrimination against 13C might be associated with short-term ecosystem respiration. However, these differences might also be explained by substantial contributions of other not measured carbon pools (e.g., lipids) to ecosystem respiration or contributions linked to differences in footprint area between Keeling plots and carbohydrate sampling. Linking the seasonal and inter-annual variations in carbon isotope composition of carbohydrates and respiratory CO2 should be applicable in carbon cycle models and help the understanding of inter-annual variation in biospheric sink strength.  相似文献   

12.
Solid-state cross-polarisation/magic-angle-spinning3C nuclear magnetic resonance (CP/MAS13C NMR) spectroscopy was used to characterise semi-quantitatively the organic materials contained in particle size and density fractions isolated from five different mineral soils: two Mollisols, two Oxisols and an Andosol. The acquired spectra were analysed to determine the relative proportion of carboxyl, aromatic, O-alkyl and alkyl carbon contained in each fraction. Although similar types of carbon were present in all of the fractions analysed, an influence of both soil type and particle size was evident.The chemical structure of the organic materials contained in the particle size fractions isolated from the Andosol was similar; however, for the Mollisols and Oxisols, the content of O-alkyl, aromatic and alkyl carbon was greatest in the coarse, intermediate and fine fractions, respectively. The compositional differences noted in progressing from the coarser to finer particle size fractions in the Mollisols and Oxisols were consistent with the changes noted in other studies where CP/MAS13C NMR was used to monitor the decomposition of natural organic materials. Changes in the C:N ratio of the particle size fractions supported the proposal that the extent of decomposition of the organic materials contained in the fine fractions was greater than that contained in the coarse fractions. The increased content of aromatic and alkyl carbon in the intermediate size fractions could be explained completely by a selective preservation mechanism; however, the further accumulation of alkyl carbon in the clay fractions appeared to result from both a selective preservation and anin situ synthesis.The largest compositional differences noted for the entire organic fraction of the five soils were observed between soil orders. The differences within orders were smaller. The Mollisols and the Andosol were both dominated by O-alkyl carbon but the Andosol had a lower alkyl carbon content. The Oxisols were dominated by both O-alkyl and alkyl carbon.A model describing the oxidative decomposition of plant materials in mineral soils is proposed and used to explain the influence of soil order and particle size on the chemical composition of soil organic matter in terms of its extent of decomposition and bioavailability.  相似文献   

13.
Environmental factors significantly influence the incidence and course of metabolic syndrome diseases such as diabetes and obesity. The content of elements in rainwater is an indirect indicator of their presence in dust suspended in the air. In this paper we present the relationships between the content of selected elements in rainwater and hospitalization frequencies due to diabetes (E10–E13) and obesity (E66). It was assumed that the hospitalization frequency could be taken as a measure of deterioration of the metabolic process in the course of diabetes and its complications. The observations concerned the population of Opole Voivodeship, Poland (one million inhabitants), distributed in small communities of 44,000 to 151,000 inhabitants during the years 2000–2002. In cases of diabetes E10–E13 for all subjects relevant correlation indicators were found for chromium (r = 0.71), cadmium (r = 0.65), and lead (r = 0.66). Borderline relevance was seen for copper (r = 0.57) and zinc (r = 056). For diabetic men the statistically relevant correlations were chromium (r = 0.79), lead (r = 0.77), cadmium (r = 0.74), copper (r = 0.70), chloride (r = 0.69), zinc (r = 0.68), and iron (r = 0.64). For women the only relevant correlations were chromium (r = 0.62) and cadmium (r = 0.55). No significant correlations were found in obese individuals of both sexes.  相似文献   

14.
To better understand the effects of local topography and climate on soil respiration, we conducted field measurements and soil incubation experiments to investigate various factors influencing spatial and temporal variations in soil respiration for six mixed‐hardwood forest slopes in the midst of the Korean Peninsula. Soil respiration and soil water content (SWC) were significantly greater (P=0.09 and 0.003, respectively) on north‐facing slopes compared to south‐facing slopes, while soil temperature was not significantly different between slopes (P>0.5). At all sites, soil temperature was the primary factor driving temporal variations in soil respiration (r2=0.84–0.96) followed by SWC, which accounted for 30% of soil respiration spatial and temporal variability. Results from both field measurements and incubation experiments indicate that variations in soil respiration due to aspect can be explained by a convex‐shaped function relating SWC to normalized soil respiration rates. Annual soil respiration estimates (1070–1246 g C m?2 yr?1) were not closely related to mean annual air temperatures among sites from different climate regimes. When soils from each site were incubated at similar temperatures in a laboratory, respiration rates for mineral soils from wetter and cooler sites were significantly higher than those for the drier and warmer sites (n=4, P<0.01). Our results indicate that the application of standard temperature‐based Q10 models to estimate soil respiration rates for larger geographic areas covering different aspects or climatic regimes are not adequate unless other factors, such as SWC and total soil nitrogen, are considered in addition to soil temperature.  相似文献   

15.
Short- and long-term effects of elevated CO2 concentration and temperature on whole plant respiratory relationships are examined for wheat grown at four constant temperatures and at two CO2 concentrations. Whole plant CO2 exchange was measured on a 24 h basis and measurement conditions varied both to observe short-term effects and to determine the growth respiration coefficient (rg), dry weight maintenance coefficient (rm), basal (i.e. dark acclimated) respiration coefficient (rg), and 24 h respiration:photosynthesis ratio (R:P). There was no response of rg to short-term variation in CO2 concentration. For plants with adequate N supply, rg was unaffected by the growth-CO2 despite a 10% reduction in the plant's N concentration (%N). However, rm was decreased 13%, and rb was decreased 20% by growth in elevated CO2 concentration relative to ambient. Nevertheless, R:P was not affected by growth in elevated CO2. Whole plant respiration responded to short-term variation of ± 5 °C around the growth temperature with low sensitivity (Q10= 1.8 at 15 °C, 1.3 at 30 °C). The shape of the response of whole plant respiration to growth temperature was different from that of the short term response, being a slanted S-shape declining between 25 and 30 °C. While rm, increased, rg decreased when growth temperature increased between 15 and 20 °C. Above 20 °C rm became temperature insensitive while rg increased with growth temperature. Despite these complex component responses, R:P increased only from 0.40 to 0.43 between 15° and 30 °C growth temperatures. Giving the plants a step increase in temperature caused a transient increase in R:P which recovered to the pre-transient value in 3 days. It is concluded that use of a constant R:P with respect to average temperature and CO2 concentration may be a more simple and accurate way to model the responses of wheat crop respiration to ‘climate change’ than the more complex and mechanistically dubious functional analysis into growth and maintenance components.  相似文献   

16.
The new NMR experiments 3D H2BC and clean HMBC are explored for challenging applications to a complex carbohydrate at natural abundance of 13C. The 3D H2BC experiment is crucial for sequential assignment as it yields heteronuclear one- and two-bond together with COSY correlations for the 1H spins, all in a single spectrum with good resolution and non-informative diagonal-type peaks suppressed. Clean HMBC is a remedy for the ubiquitous problem of strong coupling induced one-bond correlation artifacts in HMBC spectra of carbohydrates. Both experiments work well for one of the largest carbohydrates whose structure has been determined by NMR, not least due to the enhanced resolution offered by the third dimension in 3D H2BC and the improved spectral quality due to artifact suppression in clean HMBC. Hence these new experiments set the scene to take advantage of the sensitivity boost achieved by the latest generation of cold probes for NMR structure determination of even larger and more complex carbohydrates in solution.  相似文献   

17.
Protein and total nitrogen contents and respiration rate (at 10°C) were estimated in 22 herbaceous species of Wrangel Island (lat. 71° N). Protein nitrogen content and respiration rate in leaves of these plants were found to exceed 1.3- and 2.4-fold the corresponding indices in the temperate zone plants at the same temperature. The relationship between the content of protein nitrogen and respiration in the Wrangel Island species was insignificant (r 2 = 0.137), and the authors conclude that the protein content in the northern plants is not the factor determining the respiration rate in particular plant species. It follows that rather than depend on such indirect indices as nitrogen content, the models for carbon cycle in the North should employ direct respiration measurements at natural plant habitats.  相似文献   

18.
Cobo  J. G.  Barrios  E.  Kass  D. C. L.  Thomas  R. J. 《Plant and Soil》2002,240(2):331-342
The decomposition and nutrient release of 12 plant materials were assessed in a 20-week litterbag field study in hillsides from Cauca, Colombia. Leaves of Tithonia diversifolia (TTH) and Indigofera constricta (IND) decomposed quickly (k=0.035±0.002 d–1), while those of Cratylia argentea (CRA) and the stems evaluated decomposed slowly (k=0.007±0.002 d–1). Potassium presented the highest release rates (k>0.085 d–1). Rates of N and P release were high for all leaf materials evaluated (k>0.028 d–1) with the exception of CRA (N and P), TTH and IND (P). While Mg release rates ranged from 0.013 to 0.122 d–1, Ca release was generally slower (k=0.008–0.041 d–1). Initial quality parameters that best correlated with decomposition (P>0.001) were neutral detergent fibre, NDF (r=–0.96) and in vitro dry matter digestibility, IVDMD (r=0.87). It is argued that NDF or IVDMD could be useful lab-based tests during screening of plant materials as green manures. Significant correlations (P>0.05) were also found for initial quality parameters and nutrient release, being most important the lignin/N ratio (r=–0.71) and (lignin+polyphenol)/N ratios (r=–0.70) for N release, the C/N (r=0.70) and N/P ratios (r=–0.66) for P release, the hemicellulose content (r=–0.75) for K release, the Ca content (r=0.82) for Ca release, and the C/P ratio (r=0.65) for Mg release. After 20 weeks, the leaves of Mucuna deerengianum released the highest amounts of N and P (144.5 and 11.4 kg ha–1, respectively), while TTH released the highest amounts of K, Ca and Mg (129.3, 112.6 and 25.9 kg ha–1, respectively). These results show the potential of some plant materials studied as sources of nutrients in tropical hillside agroecosystems.  相似文献   

19.
树干呼吸(E_s)是森林生态系统碳循环过程的重要组成部分,深入理解树干呼吸过程对未来气候变暖的响应及反馈机制有助于更加精确地估算森林生态系统碳储量。为揭示毛白杨树干呼吸及其温度敏感性的昼夜变化和季节动态规律,利用Li-Cor6400便携式光合作用测定系统及其配套使用的土壤呼吸测量气室(LI-6400-09)对冀南平原区毛白杨的树干呼吸和树干温度实施为期1年的连续监测。结果表明:(1)在生长季,毛白杨树干呼吸与树干温度之间在晚上呈现正相关的关系(R~2=0.88);相反,两者在白天为负相关的关系(R~2=0.96)。(2)整个观测期内,毛白杨树干呼吸和树干温度均呈现"钟形"的变化曲线,树干呼吸与树干温度之间存在着较好的指数函数关系(R~2=0.93),且树干呼吸的温度敏感性系数(Q_(10))为2.62;不同季节毛白杨树干呼吸的Q_(10)存在差异,生长季的Q_(10)(1.95)明显低于非生长季(3.00),表明生长呼吸和维持呼吸对温度的响应也并不相同。(3)温度矫正后的毛白杨树干呼吸(R_(15))在昼夜和季节尺度上均存在明显的变异,即夜晚的R_(15)显著高于白天(P0.01),生长季的R_(15)明显高于非生长季(P0.05);树干可溶性糖含量与生长季的R_(15)存在较好的相关性(R~2=0.52),而非生长季的R_(15)却主要受到树干淀粉含量的影响。研究结果表明,在生长季,毛白杨树干呼吸的在日变化主要受到温度的影响,而在季节尺度上Q_(10)的变异则与树干呼吸中维持呼吸所占比例及树干中非结构性碳水化合物(可溶性糖和淀粉)的含量及类型紧密相关。  相似文献   

20.
Leaf respiration and photosynthesis will respond differently to an increase in temperature during night, which can be more relevant in sensitive ecosystems such as Antarctica. We postulate that the plant species able to colonize the Antarctic Peninsula – Colobanthus quitensis (Kunth) Bartl. and Deschampsia antarctica Desv. – are able to acclimate their foliar respiration and to maintain photosynthesis under nocturnal warming to sustain a positive foliar carbon balance. We conducted a laboratory experiment to evaluate the effect of time of day (day and night) and nocturnal warming on dark respiration. Short (E0 and Q10) and long‐term acclimation of respiration, leaf carbohydrates, photosynthesis (Asat) and foliar carbon balance (R/A) were evaluated. The results suggest that the two species have differential thermal acclimation respiration, where D. antarctica showed more thermosensitivity to short‐term changes in temperature than C. quitensis. Experimental nocturnal warming affected respiration at daytime differentially between the two species, with a significant increase of R10 and Asat in D. antarctica, while no changes on respiration were observed in C. quitensis. Long thermal treatments of the plants indicated that nocturnal but not diurnal respiration could acclimate in both species, and to a greater extent in C. quitensis. Non‐structural carbohydrates were related with respiration in C. quitensis but not in D. antarctica, suggesting that respiration in the former species is likely controlled by total soluble sugars and starch during day and night, respectively. Finally, foliar carbon balance was differentially improved under warming conditions in Antarctic plants by different mechanisms, with C. quitensis deploying respiratory acclimation, while D. antarctica increased its Asat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号