首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Plants develop systemic defense responses upon exposure to pathogens or wounding by herbivores. Lipids and lipid metabolites have previously been implicated in induction of defense molecules during plant responses to physical wounding. Possible involvement of changes in lipid composition in systemic wound signal transduction was examined in leaves of seedlings of several different plant species. In the wounded tomato leaf, phosphatidic acid increased approximately fourfold within 5 min whereas lysophosphatidylcholine and lysophosphatidylethanolamine increased over twofold within 15 min of wounding. Similar changes in these lipids were observed in the neighboring non-wounded leaf. In broad bean, soybean, sunflower and pepper seedlings phosphatidic acid levels increased rapidly and systemically upon wounding. The results suggest that the role of phospholipid hydrolysis and accumulation of lipid metabolites in the early events are responsible for systemic wound signal transduction in plants. Furthermore, they indicate that the wound signal propagates outside the wounded leaf within 5 min in these plants.  相似文献   

6.
7.
Phospholipase A (PLA) activity, as measured by the accumulation of (14)C-lysophosphatidylcholine in leaves of tomato plants, increased rapidly and systemically in response to wounding. The increase in PLA activity in the systemic unwounded leaves was biphasic in wild-type tomato plants, peaking at 15 min and again at 60 min, but the second peak of activity was absent in transgenic prosystemin antisense plants. Supplying young excised tomato plants with the polypeptide hormone systemin also caused (14)C-lysophosphatidylcholine to increase to levels similar to those induced by wounding, but the increase in activity persisted for >2 hr. Antagonists of systemin blocked both the release of (14)C-lysophosphatidylcholine and the accumulation of defense proteins in response to systemin. (14)C-lysophosphatidylcholine levels did not increase in response to jasmonic acid. Chemical acylation of the lysophosphatidylcholine produced by wounding, systemin, and oligosaccharide elicitors followed by enzymatic hydrolysis with lipases of known specificities demostrated that the lysophosphatidylcholine is generated by a PLA with specificity for the sn-2 position.  相似文献   

8.
9.
The systemic induction of proteinase inhibitor genes in tomato plants is mediated either by electrical signals, hydraulic signals or chemical messengers. In the present study we analyzed the effects of mechanical wounding, heat treatment and electrical current application on wild-type tomato plants (Lycopersicon esculentum Mill, cv Moneymaker) and ABA-deficient mutants of tomato (sitiens). Kinetic studies revealed that systemic Pin2 gene expression could be slightly induced by the fast transient membrane potential change which left the damaged leaf within 30–60s after wounding. Moreover, a signal leaving the damaged tissue between 2 and 4 minutes after wounding was responsible for a significant amplification of Pin2 gene expression. This signal could either be a decrease in turgor pressure, which occurred 3–4min after treatment, or a slow electrical transient. In addition, mechanical wounding and electrical current seem to involve ABA to induce changes in membrane potential and to promote Pin2 gene expression. In contrast, heat triggers fast and slow electrical transients leading to an induction of Pin2 gene expression within the plant independently of ABA. Turgor pressure, in turn, is presumably adjusted in relation to ionic movements across the membrane, elucidated by membrane potential recordings. In conclusion, wound-induced changes in membrane potential seem to be dependent on the endogenous level of ABA. These shifts in membrane potentials, in turn, are involved in regulation of turgor pressure within the plant.  相似文献   

10.
11.
12.
13.
Wounding both cotyledons ofBidens pilosa (var.radiatus) induces the inhibition of hypocotyl growth. The wound signal is transmitted very rapidly from cotyledon to hypocotyl and can be visualized by the change in nucleotide pools. First we have shown that the irradiance of the plant can change the ATP level without plant wounding. Therefore, plants were harvested at the start of the light period. Under these conditions, we have determined in hypocotyl the levels of adenosine triphosphate (ATP), guanosine triphosphate (GTP) and non adenylic triphosphates (NTP), and adenylate energy charge (AEC) after wounding. We have observed a transient (2 min) increase in the ATP level followed by a decrease 5 to 30 min later. A similar result was obtained for the GTP level but with some delay. The GTP level increased in 5 min and then decreased after 60 min. For the NTP level the decrease is effective from 5 to 60 min after wounding. The calculation of AEC has shown that a very tight control in the level of ATP may be involved in response to wounding.  相似文献   

14.
We have examined the role of protein kinase D1 (PKD1) signaling in intestinal epithelial cell migration. Wounding monolayer cultures of intestinal epithelial cell line IEC-18 or IEC-6 induced rapid PKD1 activation in the cells immediately adjacent to the wound edge, as judged by immunofluorescence microscopy with an antibody that detects the phosphorylated state of PKD1 at Ser(916), an autophosphorylation site. An increase in PKD1 phosphorylation at Ser(916) was evident as early as 45 s after wounding, reached a maximum after 3 min, and persisted for ≥15 min. PKD1 autophosphorylation at Ser(916) was prevented by the PKD family inhibitors kb NB 142-70 and CRT0066101. A kb NB 142-70-sensitive increase in PKD autophosphorylation was also elicited by wounding IEC-6 cells. Using in vitro kinase assays after PKD1 immunoprecipitation, we corroborated that wounding IEC-18 cells induced rapid PKD1 catalytic activation. Further results indicate that PKD1 signaling is required to promote migration of intestinal epithelial cells into the denuded area of the wound. Specifically, treatment with kb NB 142-70 or small interfering RNAs targeting PKD1 markedly reduced wound-induced migration in IEC-18 cells. To test whether PKD1 promotes migration of intestinal epithelial cells in vivo, we used transgenic mice that express elevated PKD1 protein in the small intestinal epithelium. Enterocyte migration was markedly increased in the PKD1 transgenic mice. These results demonstrate that PKD1 activation is one of the early events initiated by wounding a monolayer of intestinal epithelial cells and indicate that PKD1 signaling promotes the migration of these cells in vitro and in vivo.  相似文献   

15.
Phosphatidic acid (PA) increases in response to wounding at the neighboring unwounded leaf as well as at the wounded leaf of many plants (Lee et al., 1997). This indicates that a signal propagates from the wounded leaf to its neighboring leaves. In this paper, we report the speed and direction of propagation for a systemic wound signal that elevates PA. When a leaf of a soybean (Glycine max) seedling at the 2-leaf-stage was wounded, the PA level of the neighboring leaf did not change within the first min, but did increase significantly in 2 min, returning to the control level after 15 min. This implies that the systemic wound signal was generated at least within 2 min of wounding, and was propagated at a speed of at least 10–16 mm/min. When we wounded individual leaves of soybean and tobacco (Nicotiana tabaccum) seedlings that had 3 or 4 leaves, PA levels were elevated only in the younger leaves located above the wounded leaf, but not in the older, lower leaves. Thus, the PA-elevating wound signal preferentially moves upward in these plants.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号