首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structure of monoamine oxidase B revealed three aromatic amino acid residues within contact distance of the flavin cofactor and a large number of aromatic residues in the substrate binding site. Circular dichroism (CD) spectroscopy can detect alterations in the environment of aromatic residues as a result of ligand binding or redox changes. CD spectra of MAO A indicate that a small inhibitor such d-amphetamine perturbs the aromatic residues very little, but binding of the larger pirlindole (2,3,3a,4,5,6-hexahydro-8-methyl-1H-pyrazino[3,2,1-j,k]carbazole hydrochloride) causes spectral changes consistent with the alteration of the environment of tyrosine and tryptophan residues in particular. Reduction of the flavin cofactor induces large enhancement of the CD signals in the aromatic region (260-310 nm). When covalent modification of the flavin by clorgyline accompanies reduction, the perturbation is even greater. In contrast to the static picture offered by crystallography, this study reveals changes in the aromatic cage on ligand binding and suggests that reduction of the cofactor substantially alters the environment of aromatic residues presumably near the flavin. In addition, the covalently modified reduced MAO A shows significant differences from the substrate-reduced enzyme.  相似文献   

2.
—(1) Rats received single intraperitoneal injections of various neuroactive chemicals in order to compare the changes of gross behaviour and the level of pyridoxal phosphate as well as the activity of the decarboxylase of aromatic amino acids, of glutamate decarboxylase and of tyrosine transaminase in the brain. (2) The majority of excitatory agents tested (i.e. convulsives like amino-oxyacetate, thiosemicarbazide, pentylenetetrazol and oxotremorine; stimulants such as amphetamine, theophylline and methylphenidate; the amphetamine-like monoamine oxidase inhibitor tranylcypromine as well as the classical monoamine oxidase inhibitor iproniazid when combined with the monoamine releaser Ro 4-1284) caused a decrease in aromatic decarboxylase activity which was coexistent with maximal changes of gross behaviour and partly preceded the latter. The level of pyridoxal phosphate was only partially parallel. As an exception, depression of aromatic decarboxylase was lacking after cocaine (which reduced pyridoxal phosphate only), atropine, the hallucinogens lysergic acid diethylamide and mescaline as well as the combination of the dopamine precursor l -DOPA and the aromatic decarboxylase inhibitor Ro 4-4602. (3) Depression of obvious central nervous functions was almost regularly accompanied and in part preceded by increase of DCA activity (i.e. with the anaesthetics pentobarbitone, diethyl ether and chloroform, the neuroleptics chlorpromazine, haloperidol, reserpine and the benzoquinolizine Ro 4-1284 as well as the tranquillizers diazepam and chlordiazepoxide). Pyridoxal phosphate was increased during or after maximal behavioural changes by pentobarbitone and chlorpromazine only. As an exception, activation of aromatic decarboxylase was absent after morphine. (4) The activity of glutamate decarboxylase was significantly reduced by thiosemicarbazide only, whereas a distinct increase in enzyme activity was exclusively observed after atropine. (5) Tyrosine transaminase activity was significantly diminished by amino-oxyacetate only and showed a late increase after tranylcypromine. (6) It is concluded that there is an inverse relationship, in the majority of neuroactive chemicals tested, between changes of gross behaviour and cerebral aromatic decarboxylase activity. Thereby, the latter is neither regularly related to corresponding variations of the total cerebral pyridoxal phosphate nor to hitherto described alterations of the monoamine turnover nor to effects on other vitamin B6-dependent enzymes.  相似文献   

3.
To illustrate the functions of the aromatic residue Phe35 of cytochrome b(5) and to give further insight into the roles of the Phe35-containing hydrophobic patch and/or aromatic channel of cytochrome b(5), we studied electron transfer reactions of cytochrome b(5) and its Phe35Tyr and Phe35Leu variants with cytochrome c, with the wild-type and Tyr83Phe and Tyr83Leu variants of plastocyanin, and with the inorganic complexes [Fe(EDTA)](-), [Fe(CDTA)](-) and [Ru(NH(3))(6)](3+). The changes at Phe35 of cytochrome b(5) and Tyr83 of plastocyanin do not affect the second-order rate constants for the electron transfer reactions. These results show that the invariant aromatic residues and aromatic patch/channel are not essential for electron transfer in these systems.  相似文献   

4.
Glucose pulse experiments were performed to elucidate their effects on the carbon flux into the aromatic amino acid pathway in different Escherichia coli strains. Using a 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP, aroB(-))-producing strain, a fed-batch fermentation strategy specialized for glucose pulse experiments was developed and further applied for 3-dehydroshikimate (DHS, aroE(-))- and shikimate 3-phosphate (S3P, aroA(-))-producing E. coli strains. The strains overexpress a feedback-resistant DAHP synthase and additional enzymes to prevent rate-limiting steps in the aromatic amino acid pathway. Changes of carbon flux into the aromatic amino acid pathway were determined via extracellular metabolite accumulations using (1)H NMR and HPLC measurements. As an important result, a close relationship between pulse intensity and aromatic metabolite formation rates was identified. The more downstream an aromatic pathway intermediate was located, the stronger the glucose pulse intensity had to be in order to detect significant changes in product formation. However, with the experimental conditions chosen, changes after pulse were detected even for shikimate 3-phosphate, the most downstream accumulating metabolite of this experimental series. Hence glucose pulse experiments are assumed to be a promising tool even for the analysis of final pathway products such as, for example, L-phenylalanine.  相似文献   

5.
A method for calculation and analysis of the contribution of changes in translational, rotational, and vibrational degrees of freedom to the energy of complex formation of aromatic compounds with DNA duplex has been developed. The results of calculations of the thermodynamic parameters (ΔG, ΔH, ΔS) indicate that changes in the translational and rotational degrees of freedom destabilize, and changes in the vibrational degree of freedom stabilize the complexes, the energy contribution from the movements under consideration being predominantly of entropic character. It is shown that the energy components of changes in translational, rotational, and vibrational degrees of freedom are in the main comparable with the experimentally determined thermodynamic parameters, which requires consideration of these components in the energy analysis of complex formation of aromatic molecules with DNA. It has been found that the total contribution of changes in translational, rotational, and vibrational degrees of freedom to the Gibbs energy of complexing of aromatic molecules with DNA can be assumed to be on the average the same for different ligands and equal to 8.2 kcal/mol.  相似文献   

6.
Bovine muscle carbonic anhydrase (isoenzyme III; BCAIII) exhibited a three-state unfolding process at equilibrium upon denaturation in guanidine hydrochloride (GuHCl). The stable folding intermediate appeared to be of molten globule type. The stability towards GuHCl in terms of mid-point concentrations of denaturation were very similar for BCAIII and human CAII (HCAII). It was further demonstrated that the aromatic amino acid residues contributed significantly to the circular dichroism (CD) spectrum in the far-UV wavelength region during the native-->molten globule state transition. Thus, the ellipiticity change at 218 nm was shown to monitor the loss of tertiary interactions of aromatic side chains at the first unfolding transition as well as the rupture of secondary structure at the second unfolding transition. Similar aromatic contributions to the far-UV CD spectrum, but with varying magnitudes, were also noted for BCAII and HCAII, further emphasizing that interference of aromatic residues should not be neglected at wavelengths that normally are assigned to secondary structural changes.  相似文献   

7.
Slow inactivation of Kv1 channels involves conformational changes near the selectivity filter. We examine such changes in Shaker channels lacking fast inactivation by considering the consequences of mutating two residues, T449 just external to the selectivity filter and V438 in the pore helix near the bottom of the selectivity filter. Single mutant T449F channels with the native V438 inactivate very slowly, and the canonical foot-in-the-door effect of extracellular tetraethylammonium (TEA) is not only absent, but the time course of slow inactivation is accelerated by TEA. The V438A mutation dramatically speeds inactivation in T449F channels, and TEA slows inactivation exactly as predicted by the foot-in-the-door model. We propose that TEA has this effect on V438A/T449F channels because the V438A mutation produces allosteric consequences within the selectivity filter and may reorient the aromatic ring at position 449. We investigated the possibility that the blocker promotes the collapse of the outer vestibule (spring-in-the-door) in single mutant T449F channels by an electrostatic attraction between a cationic TEA and the quadrupole moments of the four aromatic rings. To test this idea, we used in vivo nonsense suppression to serially fluorinate the introduced aromatic ring at the 449 position, a manipulation that withdraws electrons from the aromatic face with little effect on the shape, net charge, or hydrophobicity of the aromatic ring. Progressive fluorination causes monotonically enhanced rates of inactivation. In further agreement with our working hypothesis, increasing fluorination of the aromatic gradually transforms the TEA effect from spring-in-the-door to foot-in-the-door. We further substantiate our electrostatic hypothesis by quantum mechanical calculations.  相似文献   

8.
Takayama Y  Harada E  Kobayashi R  Ozawa K  Akutsu H 《Biochemistry》2004,43(34):10859-10866
The roles of aromatic residues in redox regulation of cytochrome c(3) were investigated by site-directed mutagenesis at every aromatic residue except for axial ligands (Phe20, Tyr43, Tyr65, Tyr66, His67, and Phe76). The mutations at Phe20 induced large chemical shift changes in the NMR signals for hemes 1 and 3, and large changes in the microscopic redox potentials of hemes 1 and 3. The NMR signals of the axial ligands of hemes 1 and 3 were also affected. Analysis of the nature of the mutations revealed that a hydrophobic environment and aromaticity are important for the reduction of the redox potentials of hemes 1 and 3, respectively. There was also a global effect. The replacement of Tyr66 with leucine induced chemical shift changes for heme 4, and changes in the microscopic redox potentials of heme 4. The mutations of Tyr65 induced changes in the chemical shifts and microscopic redox potentials for every heme, suggesting that Tyr65 stabilizes the global conformation, thereby reducing the redox potentials. In contrast, although the mutations of His67 and Phe76 caused chemical shift changes for heme 2, they did not affect its redox potentials, showing these residues are not important. All noncoordinated aromatic residues conserved in the cytochrome c(3) subfamily with heme binding motifs CXXCH, CXXXXCH, CXXCH, and CXXXXCH (Phe20, Tyr43, and Tyr66) are involved in the pi-pi interaction, which causes a decrease in the redox potential of the interacting heme. The global effect can be attributed to either direct or indirect interactions among the four hemes in the cyclic architecture.  相似文献   

9.
Aromatic tuning, i.e. repositioning aromatic residues found at the cytoplasmic end of transmembrane (TM) domains within bacterial receptors, has been previously shown to modulate signal output from the aspartate chemoreceptor (Tar) and the major osmosensor EnvZ of Escherichia coli. In the case of Tar, changes in signal output consistent with the vertical position of the native Trp-Tyr aromatic tandem within TM2 were observed. In contrast, within EnvZ, where a Trp-Leu-Phe aromatic triplet was repositioned, the surface that the triplet resided upon was the major determinant governing signal output. However, these studies failed to determine whether moving the aromatic residues was sufficient to physically reposition the TM helix within a membrane. Recent coarse-grained molecular dynamics (CG-MD) simulations predicted displacement of Tar TM2 upon moving the aromatic residues at the cytoplasmic end of the helix. Here, we demonstrate that repositioning the Trp-Tyr tandem within Tar TM2 displaces the C-terminal boundary of the helix relative to the membrane. In a similar analysis of EnvZ, an abrupt initial displacement of TM2 was observed but no subsequent movement was seen, suggesting that the vertical position of TM2 is not governed by the location of the Trp-Leu-Phe triplet. Our results also provide another set of experimental data, i.e. the resistance of EnvZ TM2 to being displaced upon aromatic tuning, which could be useful for subsequent refinement of the initial CG-MD simulations. Finally, we discuss the limitations of these methodologies, how moving flanking aromatic residues might impact steady-state signal output and the potential to employ aromatic tuning in other bacterial membrane-spanning receptors.  相似文献   

10.
Based on a comparison of the 2nd derivative spectra of cytochrome P-450 LM2, cytochrome c and hemoglobin with the corresponding mixtures of aromatic amino acids and the individual aromatic amino acids a significant red shift of the maxima of the absorption bands appearing as distinct minima in the 2nd derivative spectrum have been observed in the proteins. This red shift has been shown to be caused by a lowered polarity of the immediate surroundings of the chromophores. The band positions of the aromatic amino acids in the 3 investigated hemoproteins are nearly the same and therefore do not allow to qantitate conformation dependent spectral changes of the chromophores. In agreement with X-ray crystallographic data aromatic amino acids of cytochrome c and of hemoglobin are subjected to spectral changes at the transition from the oxidized to the reduced state. These redox linked conformational changes are indicated by significant changes of the amplitudes of the aromatic acids in the 2nd derivative spectrum. A quantitative evaluation of the amplitudes revealed characteristics specific for cytochrome c and hemoglobin. Surprisingly the 2nd derivative spectrum in the median UV-region of cytochrome P-450 LM2 does not show any significant change at reduction.  相似文献   

11.
The interaction of the important but often overdosed local anesthetic bupivacaine, its structural analogs 2,6-dimethylaniline, and N-methyl-2,6-dimethylacetanilide, and cocaine, with several electron deficient aromatic moieties were studied primarily by proton NMR and UV-visible spectroscopy. In solution, the anesthetic, its analogs and cocaine are electron donors and form pi-pi charge transfer complexes with strong aromatic acceptors, as monitored by the upfield changes induced in the NMR chemical shifts (delta) and red-shifted UV-vis wavelength (lamda max) absorbance of the acceptors. The equilibrium binding constant, K, was determined from the 1H NMR charge transfer induced chemical shift changes and used to calculate the free energy (deltaG) for complex formation of three acceptor-donor pairs. HPLC results indicate that the concentrations of free bupivacaine, its analogs and of cocaine are reduced from solution via binding to aromatic-functionalized silica.  相似文献   

12.
 双苄基异喹啉类化合物拮抗钙调素(CaM),抑制CaM激活的环核苷酸磷酸二酯酶(PDE),研究表明:蝙蝠葛碱和小檗胺分子中12位羟墓被芳香基团酯化或醚化时,芳香基团的电子云分布状态变化能增加或降低分子的拮抗活性;取代基中的次甲基数增加可以增强分子的拮抗活性。分子非极性端引入含氮基团,化合物的拮抗活性较低。测试的化合物中,E_6D_(12)和D_(14)的拮抗CaM活性较强,IC_(50)分别为0.58μmol/L0.58μmol/L和0.53μmol/L。实验结果表明,分子的拮抗活性与分子非极性端的疏水性、电子云分布状态以及分子空间结构等多种结构性质相关。  相似文献   

13.
The interaction of aromatic donor molecules with manganese(III) protoporphyrin-apohorseradish peroxidase complex [Mn(III)HRP] was investigated by optical difference spectroscopy and relaxation rate measurements of 1H resonances of aromatic donor molecules (at 500 MHz). pH dependence of substrate proton resonance line-widths indicated that the binding was facilitated by protonation of an amino acid residue (with a pKa of 6.1), which is presumably distal histidine. Dissociation constants were evaluated from both optical difference spectroscopy and 1H-NMR relaxation measurements (pH 6.1). The dissociation constants of aromatic donor molecules were not affected by the presence of excess of I-, CN- and SCN-. From competitive binding studies it was shown that all these aromatic donor molecules bind to Mn(III)HRP at the same site, which is different from the binding site of I-, CN- and SCN-. Comparison of the dissociation constants between the different substrates suggests that hydrogen bonding of the donors with distal histidyl amino acid and hydrophobic interaction between the donors and active site contribute significantly towards the associating forces. Free energy, entropy and enthalpy changes associated with the Mn(III)HRP-substrate equilibrium have been evaluated. These thermodynamic parameters were found to be all negative. Distances of the substrate protons from the paramagnetic manganese ion of Mn(III)HRP were found to be in the range of 7.7 to 9.4 A. The Kd values, the thermodynamic parameters and the distances of the bound aromatic donor protons from metal center in the case of Mn(III)HRP were found to be very similar as in the case of native Fe(III)HRP.  相似文献   

14.
Structural intermediates in folding of yeast iso-2 cytochrome c   总被引:6,自引:0,他引:6  
B T Nall 《Biochemistry》1983,22(6):1423-1429
The kinetic properties of the folding reactions of iso-2 cytochrome c from Saccharomyces cerevisiae have been investigated by stopped-flow and temperature-jump methods. Three different structural probes are compared: (1) absorbance changes in the visible reflecting changes in heme environment, (2) ultraviolet absorbance changes due to the exposure of aromatic groups to solvent, and (3) tryptophan fluorescence attributable principally to the average distance between the tryptophan residue (donor) and the heme (quencher). In addition, two probes either indicative of or correlated with function, ascorbic acid reducibility and the 695-nm absorbance band, have been used to monitor specifically the rate of formation of the native protein on refolding. The fastest phase observed (tau 3) has a measurable relative amplitude only when monitored by visible absorbance changes, suggesting that this reaction involves changes in heme environment in the absence of significant changes in the heme to tryptophan distance or in the extent to which aromatic groups are exposed to solvent. Different slow phases are observed when complete refolding is monitored by visible or ultraviolet absorbance (tau 1a) as opposed to tryptophan fluorescence (tau 1b), the fluorescence changes being complete on a time scale 4-8-fold faster than for absorbance. A mid-range kinetic phase (tau 2) is detected by all three structural probes. When ascorbic acid reducibility or 695-nm absorbance changes are used to monitor the rate of formation of the native protein, two phases are detected: tau 2 and tau 1a. Taken together these results demonstrate that kinetic phase tau 1b results in the formation of a structural intermediate in folding with fluorescence close to that of the native protein but with distinct absorbance properties.  相似文献   

15.
James Manis  Giho Kim 《Life sciences》1980,26(17):1431-1439
Aryl hydrocarbon hydroxylase (AHH) has been measured as benzo(a)pyrene hydroxylase in the intestine and liver of rats and mice treated with a single dose of different polyhalogenated aromatic hydrocarbons. Maximal stimulation of liver AHH activity is reached with a dose of 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD) half as great as that necessary for maximal stimulation of the intestine. The duration of the effect of TCDD on intestinal AHH differs from the constant increase that occurs in the liver. Although the magnitude of the stimulation by 1,1,1-trichloro-2,2-bis (p-chlorophenyl) ethane (DDT) is less than that of TCDD, the qualitative changes in intestinal and liver AHH are similar. The changes in activity of intestinal and hepatic AHH were not directly correlated in the tissues of rats treated with several other polyhalogenated aromatic hydrocarbons. Liver and intestinal AHH activity were affected differently by fasting. These results suggest that AHH activity in the intestine and liver has different control mechanisms.  相似文献   

16.
Proteins display a broad peak in 250–300 nm region of their UV spectrum containing multiple overlapping bands arising from the aromatic rings of phenylalanine, tyrosine, and tryptophan residues. Employing high resolution 2nd derivative absorbance spectroscopy, these overlapping absorption bands can be highly resolved and therefore provide a very sensitive measure of changes in the local microenvironment of the aromatic side chains. This has traditionally been used to detect both subtle and dramatic (i.e., unfolding) conformational alterations of proteins. Herein, we show that plots of the temperature dependent 2nd derivative peak positions of aromatic residues have measurable slopes before protein unfolding and that these slopes are sensitive to the dielectric properties of the surrounding microenvironment. We further demonstrate that these slopes correlate with hydration of the buried aromatic residues in protein cores and can therefore be used as qualitative probes of protein dynamics.  相似文献   

17.
Catalytically essential side-chain radicals have been recognized in a growing number of redox enzymes. Here we present a novel approach to study this class of redox cofactors. Our aim is to construct a de novo protein, a radical maquette, that will provide a protein framework in which to investigate how side-chain radicals are generated, controlled, and directed toward catalysis. A tryptophan and a tyrosine radical maquette, denoted alpha(3)W(1) and alpha(3)Y(1), respectively, have been synthesized. alpha(3)W(1) and alpha(3)Y(1) contain 65 residues each and have molecular masses of 7.4 kDa. The proteins differ only in residue 32, which is the position of their single aromatic side chain. Structural characterization reveals that the proteins fold in water solution into thermodynamically stable, alpha-helical conformations with well-defined tertiary structures. The proteins are resistant to pH changes and remain stable through the physiological pH range. The aromatic residues are shown to be located within the protein interior and shielded from the bulk phase, as designed. Differential pulse voltammetry was used to examine the reduction potentials of the aromatic side chains in alpha(3)W(1) and alpha(3)Y(1) and compare them to the potentials of tryptophan and tyrosine when dissolved in water. The tryptophan and tyrosine potentials were raised considerably when moved from a solution environment to a well-ordered protein milieu. We propose that the increase in reduction potential of the aromatic residues buried within the protein, relative to the solution potentials, is due to a lack of an effective protonic contact between the aromatic residues and the bulk solution.  相似文献   

18.
To understand how proteins translate the energy of sunlight into defined conformational changes, we have measured the photocycle reactions of photoactive yellow protein (PYP) using time-resolved step scan Fourier transform infrared (FTIR) spectroscopy. Global fit analysis yielded the same apparent time constants for the reactions of the chromophore, the protonation changes of protein side chains and the protein backbone motions, indicating that the light cycle reactions are synchronized. Changes in absorbance indicate that there are at least four intermediates (I1, I1', I2, I2'). In the intermediate I1, the dark-state hydrogen bond from Glu 46 to the aromatic ring of the p-hydroxycinnamoyl chromophore is preserved, implying that the chromophore undergoes trans to cis isomerization by flipping, not the aromatic ring, but the thioester linkage with the protein. This excludes an I1 structural model proposed on the basis of time resolved Laue crystallography, but does agree with the cryotrapped structure of an I1 precursor.  相似文献   

19.
Geometric (HOMA) and magnetic (NICS) indices of aromaticity were estimated for aromatic rings of amino acids and nucleobases. Cartesian coordinates were taken directly either from PDB files deposited in public databases at the finest resolution available (≤1.5?Å), or from structures resulting from full gradient geometry optimization in a hybrid QM/MM approach. Significant environmental effects imposing alterations of HOMA values were noted for all aromatic rings analysed. Furthermore, even extra fine resolution (≤1.0?Å) is not sufficient for direct estimation of HOMA values based on Cartesian coordinates provided by PDB files. The values of mean bond errors seem to be much higher than the 0.05?Å often reported for PDB files. The use of quantum chemistry geometry optimization is strongly advised; even a simple QM/MM model comprising only the aromatic substructure within the QM region and the rest of biomolecule treated classically within the MM framework proved to be a promising means of describing aromaticity inside native environments. According to the results presented, three consequences of the interaction with the environment can be observed that induce changes in structural and magnetic indices of aromaticity. First, broad ranges of HOMA or NICS values are usually obtained for different conformations of nearest neighborhood. Next, these values and their means can differ significantly from those characterising isolated monomers. The most significant increase in aromaticities is expected for the six-membered rings of guanine, thymine and cytosine. The same trend was also noticed for all amino acids inside proteins but this effect was much smaller, reaching the highest value for the five-membered ring of tryptophan. Explicit water solutions impose similar changes on HOMA and NICS distributions. Thus, environment effects of protein, DNA and even explicit water molecules are non-negligible sources of aromaticity changes appearing in the rings of nucleobases and aromatic amino acids residues.  相似文献   

20.
Some data on the dynamics of free and glucoside-bound monoterpenic and aromatic (beta-phenylethyl) ethers content and the changes in the beta-glucosidase activity in rose petals at different stages of the flower development and on the kinetics of enzymatic hydrolysis of these glucosides are presented. The phase specificity of beta-glucosidase coinciding with the maximal accumulation of glucoside-bound and free alcohols is revealed. The data obtained suggest that the formation of glucosides may precede the accumulation of corresponding free alcohols of terpenic and aromatic origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号