首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Type 1 pili, anchored to the outer membrane protein FimD, enable uropathogenic Escherichia coli to attach to host cells. During pilus biogenesis, the N-terminal periplasmic domain of FimD (FimD(N)) binds complexes between the chaperone FimC and pilus subunits via its partly disordered N-terminal segment, as recently shown for the FimC-FimH(P)-FimD(N) ternary complex. We report the structure of a new ternary complex (FimC-FimF(t)-FimD(N)) with the subunit FimF(t) instead of FimH(p). FimD(N) recognizes FimC-FimF(t) and FimC-FimH(P) very similarly, predominantly through hydrophobic interactions. The conserved binding mode at a "hot spot" on the chaperone surface could guide the design of pilus assembly inhibitors.  相似文献   

2.
The structures of two forms of a recombinant flavoprotein have been determined at high resolution and compared. These proteins are (1) the flavocytochrome c p-cresol methylhydroxylase (rPCMH, 1.85 A resolution) and (2) the cytochrome-free flavoprotein subunit of rPCMH (PchF, 1.30 A resolution). A significant conformational difference is observed in a protein segment that is in contact with the re face of the isoalloxazine ring of FAD when the structure of PchF is compared to the subunit in the intact flavocytochrome. This structural change is important for optimum catalytic function of the flavoprotein, which has been shown to be dependent on the presence of the cytochrome subunit. This change results in different protein-flavin and apparently different protein-substrate interactions that have a "tuning effect" on the electronic and redox properties of bound p-cresol and the covalently bound FAD. The conformational change in the segment in the cofactor-binding site is induced by a small rearrangement in the flavoprotein-cytochrome interface region of the flavoprotein.  相似文献   

3.
Guanidinoacetate methyltransferase (GAMT) is the enzyme that catalyzes the last step of creatine biosynthesis. The enzyme is found in abundance in the livers of all vertebrates. Recombinant rat liver GAMT has been crystallized with S-adenosylhomocysteine (SAH), and the crystal structure has been determined at 2.5 A resolution. The 36 amino acid residues at the N terminus were cleaved during the purification and the truncated enzyme was crystallized. The truncated enzyme forms a dimer, and each subunit contains one SAH molecule in the active site. Arg220 of the partner subunit forms a pair of hydrogen bonds with Asp134 at the guanidinoacetate-binding site. On the basis of the crystal structure, site-directed mutagenesis on Asp134, and chemical modification and limited proteolysis studies, we propose a catalytic mechanism of this enzyme. The truncated GAMT dimer structure can be seen as a ternary complex of protein arginine methyltransferase (one subunit) complexed with a protein substrate (the partner subunit) and the product SAH. Therefore, this structure provides insight into the structure and catalysis of protein arginine methyltransferases.  相似文献   

4.
Crystalline R67 dihydrofolate reductase (DHFR) is a dimeric molecule with two identical 78 amino acid subunits, each folded into a beta-barrel conformation. The outer surfaces of the three longest beta strands in each protomer together form a third beta barrel having six strands at the subunit interface. A unique feature of the enzyme structure is that while the intersubunit beta barrel is quite regular over most of its surface, an 8-A "gap" runs the full length of the barrel, disrupting potential hydrogen bonds between beta-strand D in subunit I and the adjacent corresponding strand of subunit II. It is proposed that this deep groove is the NADPH binding site and that the association between protein and cofactor is modulated by hydrogen-bonding interactions along one face of this antiparallel beta-barrel structure. A hypothetical model is proposed for the R67 DHFR-NADPH-folate ternary complex that is consistent with both the known reaction stereoselectivity and the weak binding of 2,4-diamino inhibitors to the plasmid-specified reductase. Geometrical comparison of this model with an experimentally determined structure for chicken DHFR suggests that chromosomal and type II R-plasmid specified enzymes may have independently evolved similar catalytic machinery for substrate reduction.  相似文献   

5.
Tishchenko VM 《Biofizika》2002,47(2):228-235
The cooperative structure of Caf1M from Yersinia pestis was studied using scanning microcalorimetry, fluorescence, and limited proteolysis. It was shown that, in Caf1M-Hg (a derivative in which the disulfide bond is replaced by an S-Hg-S bond), the first to melt is the N-domain. Then the C-domain melts. After renaturation in a buffer with a low NaCl concentration, only the C-domain is in the native state, and it can be obtained by limited proteolysis. After renaturation in a buffer with a high NaCl concentration, only the N-domain is in the native state, and it can be obtained by limited proteolysis. Both domains have native structure; however, only the N-domain interacts with Cafl (natural substrate for Caf1M).  相似文献   

6.
Refined crystal structure of dogfish M4 apo-lactate dehydrogenase   总被引:11,自引:0,他引:11  
The crystal structure of M4 apo-lactate dehydrogenase from the spiny dogfish (Squalus acanthius) was initially refined by a constrained-restrained, and subsequently restrained, least-squares technique. The final structure contained 286 water molecules and two sulfate ions per subunit and gave an R-factor of 0.202 for difraction data between 8.0 and 2.0 A resolution. The upper limit for the co-ordinate accuracy of the atoms was estimated to be 0.25 A. The elements of secondary structure of the refined protein have not changed from those described previously, except for the appearance of a one-and-a-half turn 3(10) helix immediately after beta J. There is also a short segment of 3(10) helix between beta C and beta D in the part of the chain that connects the two beta alpha beta alpha beta units of the six-stranded parallel sheet (residues Tyr83 to Ala87). Examination of the interactions among the different elements of secondary structure by means of a surface accessibility algorithm supports the four structural clusters in the subunit. The first of the two sulfate ions is in the active site and occupies a cavity near the essential His195. Its nearest protein ligands are Arg171, Asp168 and Asn140. The second sulfate ion is located near the P-axis subunit interface. It is liganded by His188 and Arg173. These two residues are conserved in bacterial lactate dehydrogenase and form part of the fructose 1,6-bisphosphate effector binding site. Two other data sets in which one (collected at pH 7.8) or both (collected at pH 6.0) sulfate ions were replaced by citrate ions were also analyzed. Five cycles of refinement with respect to the pH 6.0 data (25 to 2.8 A resolution) resulted in an R value of 0.191. Only water molecules occupy the subunit boundary anion binding site at pH 7.8. The amino acid sequence was found to be in poor agreement with (2Fobs-Fcalc) electron density maps for the peptide between residues 207 and 211. The original sequence WNALKE was replaced by NVASIK. The essential His195 is hydrogen bonded to Asp168 on one side and Asn140 on the other. The latter residue is part of a turn that contains the only cis peptide bond of the structure at Pro141. The "flexible loop" (residues 97 to 123), which folds down over the active center in ternary complexes of the enzyme with substrate and coenzyme, has a well-defined structure. Analysis of the environment of Tyr237 suggests how its chemical modification inhibits the enzyme.  相似文献   

7.
It is shown by equilibrium ultracentrifugation, velocity sedimentation, and viscometry that an N-truncated structural protein Caf1 (Cafl13–149) of the Yersinia pestis capsular antigen fiber exists as a monomer in solution and is capable of folding from denatured state into a compact globular state by itself, without involvement of a chaperone or other subunits. This happens despite the fact that in the norm, important information on the tertiary structure of each Caf1 subunit (specifically, completion of its hydrophobic core) is provided by the “donor” segment Ala1-Thr12 of the neighboring fiber subunit.  相似文献   

8.
The transient secondary structure and dynamics of an intrinsically unstructured linker domain from the 70 kDa subunit of human replication protein A was investigated using solution state NMR. Stable secondary structure, inferred from large secondary chemical shifts, was observed for a segment of the intrinsically unstructured linker domain when it is attached to an N-terminal protein interaction domain. Results from NMR relaxation experiments showed the rotational diffusion for this segment of the intrinsically unstructured linker domain to be correlated with the N-terminal protein interaction domain. When the N-terminal domain is removed, the stable secondary structure is lost and faster rotational diffusion is observed. The large secondary chemical shifts were used to calculate phi and psi dihedral angles and these dihedral angles were used to build a backbone structural model. Restrained molecular dynamics were performed on this new structure using the chemical shift based dihedral angles and a single NOE distance as restraints. In the resulting family of structures a large, solvent exposed loop was observed for the segment of the intrinsically unstructured linker domain that had large secondary chemical shifts.  相似文献   

9.
The predicted conformation and position of the central transforming region (residues 55–67) of the p21 protein are compared with the conformation and position of this segment in a recently determined X-ray crystal structure of residues 1–166 of this protein in the activated state bound to a nonhydrolyzable GTP derivative. We previously predicted that this segment of the protein would adopt a roughly extended conformation from Ile 55-Thr 58, a reverse turn at Ala 59-Gln 61, followed by an -helix from Glu 62-Met 67. We further predicted that this region of the activated protein occupies a position that is virtually identical to corresponding regions in the homologous purine nucleotide-binding proteins, bacterial elongation factor (EF-tu), and adenylate kinase (ADK). We find that there is a close correspondence between the conformation and position of our predicted structure and those found in the X-ray crystal structure. A mechanism for activation of the protein is proposed and is corroborated by X-ray crystallographic data.  相似文献   

10.
P pili are important adhesive fibres involved in kidney infection by uropathogenic Escherichia coli strains. P pili are assembled by the conserved chaperone-usher pathway, which involves the PapD chaperone and the PapC usher. During pilus assembly, subunits are incorporated into the growing fiber via the donor-strand exchange (DSE) mechanism, whereby the chaperone's G1 beta-strand that complements the incomplete immunoglobulin-fold of each subunit is displaced by the N-terminal extension (Nte) of an incoming subunit. P pili comprise a helical rod, a tip fibrillum, and an adhesin at the distal end. PapA is the rod subunit and is assembled into a superhelical right-handed structure. Here, we have solved the structure of a ternary complex of PapD bound to PapA through donor-strand complementation, itself bound to another PapA subunit through DSE. This structure provides insight into the structural basis of the DSE reaction involving this important pilus subunit. Using gel filtration chromatography and electron microscopy on a number of PapA Nte mutants, we establish that PapA differs in its mode of assembly compared with other Pap subunits, involving a much larger Nte that encompasses not only the DSE region of the Nte but also the region N-terminal to it.  相似文献   

11.
Purine nucleoside phosphorylase (PNP) from Escherichia coli is a homohexamer that catalyses the phosphorolytic cleavage of the glycosidic bond of purine nucleosides. The first crystal structure of the ternary complex of this enzyme (with a phosphate ion and formycin A), which is biased by neither the presence of an inhibitor nor sulfate as a precipitant, is presented. The structure reveals, in some active sites, an unexpected and never before observed binding site for phosphate and exhibits a stoichiometry of two phosphate molecules per enzyme subunit. Moreover, in these active sites, the phosphate and nucleoside molecules are found not to be in direct contact. Rather, they are bridged by three water molecules that occupy the "standard" phosphate binding site.  相似文献   

12.
Regulators of G-protein signaling (RGS) proteins modulate signaling through heterotrimeric G-proteins. They act to enhance the intrinsic GTPase activity of the Galpha subunit but paradoxically have also been shown to enhance receptor-stimulated activation. To study this paradox, we used a G-protein gated K+ channel to report the dynamics of the G-protein cycle and fluorescence resonance energy transfer techniques with cyan and yellow fluorescent protein-tagged proteins to report physical interaction. Our data show that the acceleration of the activation kinetics is dissociated from deactivation kinetics and dependent on receptor and RGS type, G-protein isoform, and RGS expression levels. By using fluorescently tagged proteins, fluorescence resonance energy transfer microscopy showed a stable physical interaction between the G-protein alpha subunit and RGS (RGS8 and RGS7) that is independent of the functional state of the G-protein. RGS8 does not directly interact with G-protein-coupled receptors. Our data show participation of the RGS in the ternary complex between agonist-receptor and G-protein to form a "quaternary complex." Thus we propose a novel model for the action of RGS proteins in the G-protein cycle in which the RGS protein appears to enhance the "kinetic efficacy" of the ternary complex, by direct association with the G-protein alpha subunit.  相似文献   

13.
In Salmonella typhimurium, formation of the cobalt-carbon bond in the biosynthetic pathway for adenosylcobalamin is catalyzed by the product of the cobA gene which encodes a protein of 196 amino acid residues. This enzyme is an ATP:co(I)rrinoid adenosyltransferase which transfers an adenosyl moiety from MgATP to a broad range of co(I)rrinoid substrates that are believed to include cobinamide, its precursor cobyric acid and probably others as yet unidentified, and hydroxocobalamin. Three X-ray structures of CobA are reported here: its substrate-free form, a complex of CobA with MgATP, and a ternary complex of CobA with MgATP and hydroxycobalamin to 2.1, 1.8, and 2.1 A resolution, respectively. These structures show that the enzyme is a homodimer. In the apo structure, the polypeptide chain extends from Arg(28) to Lys(181) and consists of an alpha/beta structure built from a six-stranded parallel beta-sheet with strand order 324516. The topology of this fold is very similar to that seen in RecA protein, helicase domain, F(1)ATPase, and adenosylcobinamide kinase/adenosylcobinamide guanylyltransferase where a P-loop is located at the end of the first strand. Strikingly, the nucleotide in the MgATP.CobA complex binds to the P-loop of CobA in the opposite orientation compared to all the other nucleotide hydrolases. That is, the gamma-phosphate binds at the location normally occupied by the alpha-phosphate. The unusual orientation of the nucleotide arises because this enzyme transfers an adenosyl group rather than the gamma-phosphate. In the ternary complex, the binding site for hydroxycobalamin is located in a shallow bowl-shaped depression at the C-terminal end of the beta-sheet of one subunit; however, the active site is capped by the N-terminal helix from the symmetry-related subunit that now extends from Gln(7) to Ala(24). The lower ligand of cobalamin is well-ordered and interacts mostly with the N-terminal helix of the symmetry-related subunit. Interestingly, there are few interactions between the protein and the polar side chains of the corrin ring which accounts for the broad specificity of this enzyme. The corrin ring is oriented such that the cobalt atom is located approximately 6.1 A from C5' of the ribose and is beyond the range of nucleophilic attack. This suggests that a conformational change occurs in the ternary complex when Co(III) is reduced to Co(I).  相似文献   

14.
X-ray crystal structure of an IkappaBbeta x NF-kappaB p65 homodimer complex   总被引:1,自引:0,他引:1  
We report the crystal structure of a murine IkappaBbeta x NF-kappaB p65 homodimer complex. Crystallographic models were determined for two triclinic crystalline systems and refined against data at 2.5 and 2.1 A. The overall complex structure is similar to that of the IkappaBalpha.NF-kappaB p50/p65 heterodimer complex. One NF-kappaB p65 subunit nuclear localization signal clearly contacts IkappaBbeta, whereas a homologous segment from the second subunit of the homodimer is mostly solvent-exposed. The unique 47-amino acid insertion between ankyrin repeats three and four of IkappaBbeta is mostly disordered in the structure. Primary sequence analysis and differences in the mode of binding at the IkappaBbeta sixth ankyrin repeat and NF-kappaB p65 homodimer suggest a model for nuclear IkappaBbeta.NF-kappaB.DNA ternary complex formation. These unique structural features of IkappaBbeta may contribute to its ability to mediate persistent NF-kappaB activation.  相似文献   

15.
Roy R  Laage R  Langosch D 《Biochemistry》2004,43(17):4964-4970
Synaptobrevin is a membrane-spanning soluble N-ethyl maleimid-sensitive factor (NSF) attachment protein receptor (SNARE) protein of synaptic vesicles that is essential for neurotransmitter release. Various lines of evidence indicate that it exists alternatively as a monomer, as a homodimer, as a heterodimer with synaptophysin, or as a ternary complex with other SNAREs at the various stages of the synaptic vesicle cycle. Homodimerization of synaptobrevin was previously shown by different authors to depend on its single transmembrane segment, and the crucial residues forming the helix-helix interface have been mapped. Since another recent study challenged these results, we reinvestigated this issue. Here, we show that native synaptobrevin can be cross-linked in synaptic vesicle membranes to a homodimer by disulfide bond formation between cysteine residues of the transmembrane segment. Further, we demonstrate that determination of synaptobrevin transmembrane segment interactions in membranes or in detergent solution requires careful control of experimental conditions. Thus, our present results corroborate that homodimerization of synaptobrevin is mediated by its transmembrane segment.  相似文献   

16.
Transcarboxylase (TC) from Propionibacterium shermanii, a biotin-dependent enzyme, catalyzes the transfer of a carboxyl group from methylmalonyl-CoA to pyruvate to form propionyl-CoA and oxalacetate. Within the multi-subunit enzyme complex, the 1.3S subunit functions as the carboxyl group carrier and also binds the other two subunits to assist in the overall assembly of the enzyme. The 1.3S subunit is a 123 amino acid polypeptide (12.6 kDa) to which biotin is covalently attached at Lys 89. The three-dimensional solution structure of the full-length holo-1.3S subunit of TC has been solved by multidimensional heteronuclear NMR spectroscopy. The C-terminal half of the protein (51-123) is folded into a compact all-beta-domain comprising of two four-stranded antiparallel beta-sheets connected by short loops and turns. The fold exhibits a high 2-fold internal symmetry and is similar to that of the biotin carboxyl carrier protein (BCCP) of acetyl-CoA carboxylase, but lacks an extension that has been termed "protruding thumb" in BCCP. The first 50 residues, which have been shown to be involved in intersubunit interactions in the intact enzyme, appear to be disordered in the isolated 1.3S subunit. The molecular surface of the folded domain has two distinct surfaces: one side is highly charged, while the other comprises mainly hydrophobic, highly conserved residues.  相似文献   

17.
Ribosomal protein S4 represses synthesis of the four ribosomal proteins (including itself) in the Escherichia coli alpha operon by binding to a nested pseudoknot structure that spans the ribosome binding site. A model for the repression mechanism previously proposed two unusual features: (i) the mRNA switches between conformations that are "active" or "inactive" in translation, with S4 as an allosteric effector of the inactive form, and (ii) S4 holds the 30 S subunit in an unproductive complex on the mRNA ("entrapment"), in contrast to direct competition between repressor and ribosome binding ("displacement"). These two key points have been experimentally tested. First, it is found that the mRNA pseudoknot exists in an equilibrium between two conformers with different electrophoretic mobilities. S4 selectively binds to one form of the RNA, as predicted for an allosteric effector; binding of ribosomal 30 S subunits is nearly equal in the two forms. Second, we have used S4 labeled at a unique cysteine with either of two fluorophores to characterize its interactions with mRNA and 30 S subunits. Equilibrium experiments detect the formation of a specific ternary complex of S4, mRNA pseudoknot, and 30 S subunits. The existence of this ternary complex is unambiguous evidence for translational repression of the alpha operon by an entrapment mechanism.  相似文献   

18.
The three-dimensional structure of the Na,K-ATPase from electron microscopy   总被引:2,自引:0,他引:2  
The structure of Na,K-ATPase has been studied by electron microscopy and image reconstruction. A three-dimensional structure of this enzyme has been obtained to an overall resolution of 2.5 nm using data from specimens of negatively stained dimer sheets tilted through a range of angles +/- 60 degrees. The reconstruction shows a complex mass distribution consisting of ribbons of paired molecules extending approximately 6.0 nm from the cytoplasmic side of the membrane. The molecular envelope consists of a massive "body" with "lobe" and "arm" structures projecting from it. The body has a columnar shape and is tilted with respect to the plane of the membrane. The region of interaction responsible for dimer formation is located between two bodies and is clearly visible in the reconstruction. It has been identified as a segment in the amino-terminal portion of the alpha subunit. The arms that interconnect the ribbons are located close to the membrane and are most probably formed by the beta subunits.  相似文献   

19.
Aristaless (Al) and clawless (Cll) homeodomains that are involved in leg development in Drosophila melanogaster are known to bind cooperatively to 5′-(T/C)TAATTAA(T/A)(T/A)G-3′ DNA sequence, but the mechanism of their binding to DNA is unknown. Molecular dynamics (MD) studies have been carried out on binary, ternary, and reconstructed protein–DNA complexes involving Al, Cll, and DNA along with binding free energy analysis of these complexes. Analysis of MD trajectories of Cll–3A01, binary complex reveals that C-terminal end of helixIII of Cll, unwind in the absence of Al and remains so in reconstructed ternary complex, Cll–3A01–Al. In addition, this change in secondary structure of Cll does not allow it to form protein–protein interactions with Al in the ternary reconstructed complex. However, secondary structure of Cll and its interactions are maintained in other reconstructed ternary complex, Al–3A01–Cll where Cll binds to Al–3A01, binary complex to form ternary complex. These interactions as observed during MD simulations compare well with those observed in ternary crystal structure. Thus, this study highlights the role of helixIII of Cll and protein–protein interactions while proposing likely mechanism of recognition in ternary complex, Al–Cll–DNA.  相似文献   

20.
Adhesive type 1 pili from uropathogenic Escherichia coli are filamentous protein complexes that are attached to the assembly platform FimD in the outer membrane. During pilus assembly, FimD binds complexes between the chaperone FimC and type 1 pilus subunits in the periplasm and mediates subunit translocation to the cell surface. Here we report nuclear magnetic resonance and X-ray protein structures of the N-terminal substrate recognition domain of FimD (FimD(N)) before and after binding of a chaperone-subunit complex. FimD(N) consists of a flexible N-terminal segment of 24 residues, a structured core with a novel fold, and a C-terminal hinge segment. In the ternary complex, residues 1-24 of FimD(N) specifically interact with both FimC and the subunit, acting as a sensor for loaded FimC molecules. Together with in vivo complementation studies, we show how this mechanism enables recognition and discrimination of different chaperone-subunit complexes by bacterial pilus assembly platforms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号