首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 332 毫秒
1.
The retinoic acid (RA) synthesizing enzymes, retinaldehyde dehydrogenases (RALDH), are expressed in specific spatial and temporal patterns in uterine tissues during estrous cycle and early pregnancy in mice. Expression of RALDH1 and 2 has been shown to be induced by estrogen treatment within the uterus. In this study, we determined the influence of progesterone and 17-ss-estradiol on the uterine expression of the RA-metabolizing enzyme CYP26A1 after specific time intervals (1, 4, 24, and 48 hr after treatment of ovariectomized mice). In a following experiment, we investigated the influence of gestagen (promegestone 0.3 mg/kg body weight), estrogen (estradiol 3 microg/kg), their combination, as well as the antagonizing anti-progesterone hormone (RU 486 10 mg/kg) on the uterine expression of CYP26A1. Expression of CYP26A1 was localized using in situ hybridization and quantified using RT-PCR. CYP26A1 mRNA expression was strongly--although transiently--induced in uterine endometrial epithelial and glandular cells after administration of gestagen or the combination of gestagen + estrogen, but not by estrogen alone. These observations were confirmed by semi-quantitative RT-PCR experiments on whole uteri. Thus, we show that the expression of CYP26A1 in endometrial epithelial cells is regulated by progesterone and not significantly influenced by co-administration of estrogen. These data indicate an additional level of hormonal control of endogenous RA levels in the mouse uterus, where its synthesis would rely on estrogen-dependent expression of RALDH enzymes, whereas its active metabolism would be triggered by progesterone-induced CYP26A1 expression.  相似文献   

2.
3.
Polymorphisms of CYP1B1 and COMT in breast and endometrial cancer   总被引:4,自引:0,他引:4  
CYP1B1 and COMT code for the key enzymes of catecholestrogen biosynthesis and metabolism, and their polymorphisms determine a variation of enzymic activities. RFLP analysis was used to study the allele and genotype frequency distributions of CYP1B1 polymorphisms Arg48Gly, Ala119Ser, and Val432Leu and COMT polymorphism Val158Met in 210 breast cancer patients, 138 endometrial cancer patients, and 152 healthy women. The COMT polymorphism showed no significant association with breast or endometrial cancer. For the first time, such association was observed for the CYP1B1 polymorphisms. CYP1B1 allele C (Arg48), which codes for the enzyme more active in estradiol 4-hydroxylation, was associated with higher risk of breast (OR = 3.22, CI 2.34-4.43, p = 0.000) and endometrial (OR = 2.43, CI 1.72-3.44, p = 0.000) cancer. Similar data were obtained for CYP1B1 allele G (Ala119): OR = 2.18, CI 1.58-3.01, p = 0.000 in breast cancer and OR = 2.52, CI 1.78-3.56, p = 0.000 in endometrial cancer. Risk of endometrial, but not breast, cancer was significantly higher in carriers of CYP1B1 genotype Val432/Val. This was explained by stronger estrogen dependence and, consequently, higher estrogen reactivity of the endometrium as compared with the mammary gland.  相似文献   

4.
Estrogens have multifaceted roles in mammalian testis. In the present study, we focused on estradiol as a potential regulator of testicular cytochrome P450 1B1 (CYP1B1) expression and investigated the possible mechanisms involved in the estradiol-mediated suppression. CYP1B1 protein levels were measured in the testes of rats that were treated with 17β-estradiol benzoate (1.5 mg/kg) at different stages of development. In addition, CYP1B1 mRNA levels were measured in mouse MA-10 Leydig tumor cells treated with (a) various concentrations of 17β-estradiol benzoate, (b) 17β-estradiol benzoate in the presence of exogenous luteinizing hormone (LH), or (c) 17β-estradiol benzoate in the presence of ICI 182,780, a competitive steroidal antagonist of estrogen receptors (ERs). Treatment of neonatal, pubertal, or adult rats with 17β-estradiol benzoate was associated with a reduction of approximately 90% in testicular CYP1B1 protein content compared to age-matched controls. Treatment of MA-10 cells with 17β-estradiol benzoate (10-500 nM) produced a concentration- and time-dependent decrease in CYP1B1 mRNA levels, but had no effect on LH receptor mRNA levels or on protein kinase A (PKA) activity. However, 17β-estradiol benzoate (10-500 nM), regardless of the concentration tested, failed to attenuate the LH-elicited increase in CYP1B1 mRNA or PKA activity in MA-10 cells that were co-treated with LH and estradiol. Similarly, ICI 182,780 (10-1000 μM) did not reverse the suppressive effect of estradiol on CYP1B1 mRNA expression in MA-10 cells co-treated with estradiol and ICI 182,780. The results indicate that downregulation of testicular CYP1B1 by estradiol was independent of PKA activity and was not mediated by ERs in MA-10 cells.  相似文献   

5.
Selective estrogen receptor modulators (SERMs) demonstrate differential endometrial cancer (EC) risk. While tamoxifen (TAM) use increases the risk of endometrial hyperplasia and malignancy, raloxifene (RAL) has neutral effects on the uterus. How TAM increases the risk of EC and why TAM and RAL differentially modulate the risk for EC, however, remain elusive. Here, we tested the hypothesis that TAM increases the risk for EC, at least in part, by enhancing the local estrogen biosynthesis and directing estrogen metabolism towards the formation of genotoxic and hormonally active estrogen metabolites. In addition, the differential effects of TAM and RAL in EC risk are attributed to their differential effect on estrogen metabolism/metabolites. The endometrial cancer cell line (Ishikawa cells) and the nonmalignant immortalized human endometrial glandular cell line (EM1) were used for the study. The profile of estrogen/estrogen metabolites (EM), depurinating estrogen-DNA adducts, and the expression of estrogen-metabolizing enzymes in cells treated with 17β-estradiol (E2) alone or in combination with TAM or RAL were investigated using high performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS(2)), ultraperformance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS), and Western blot analysis, respectively. TAM significantly increased the total EM and enhanced the formation of hormonally active and carcinogenic estrogen metabolites, 4-hydroxestrone (4-OHE1) and 16α-hydroxyestrone, with concomitant reduction in the formation of antiestrogenic and anticarcinogenic 2-hydroxyestradiol and 2-methoxyestradiol. Furthermore, TAM increased the formation of depurinating estrogen-DNA adducts 4-OHE1 [2]-1-N7Guanine and 4-OHE1 [2]-1-N3 Adenine. TAM-induced alteration in EM and depurinating DNA adduct formation is associated with altered expression of estrogen metabolizing enzymes CYP1A1, CYP1B1, COMT, NQO1, and SF-1 as revealed by Western blot analysis. In contrast to TAM, RAL has minimal effect on EM, estrogen-DNA adduct formation, or estrogen-metabolizing enzymes expression. These data show that TAM perturbs the balance of estrogen-metabolizing enzymes and alters the disposition of estrogen metabolites, which can explain, at least in part, the mechanism for TAM-induced EC. These results also implicate the differential effect of TAM and RAL on estrogen metabolism/metabolites as a potential mechanism for their disparate effects on the endometrium.  相似文献   

6.
In this study, we investigated the effects of histone deacetylase (HDAC) inhibitors suberoylanilide hydroxamic acid (SAHA) and trichostatin A (TSA) on the metabolism of polycyclic aromatic hydrocarbons (PAH) in human mammary carcinoma derived MCF-7 cells in culture. Benzo[a]pyrene (B[a]P) induces cytochrome P450 (CYP) 1A1, CYP1B1 and other xenobiotic metabolizing enzymes. Results from our study indicated a significant increase in CYP activity in comparison to vehicle control in cells treated with SAHA or TSA as measured by ethoxyresorufin-O-deethylase assay. However, co-treatment with 1.0 microM SAHA and BP, reduced the mRNA levels of CYP1B1 relative to B[a]P alone. When co-treated with 1.0 microM TSA and BP, a reduction in the mRNA levels of both CYP1A1 and CYP1B1 was observed relative to BP alone. We further investigated to ascertain if the differential expression and activity of CYP1A1 and CYP1B1 influenced levels of B[a]P DNA adduct formation. MCF-7 cells co-treated with B[a]P and SAHA or TSA formed DNA adducts, although no significant differences in levels of DNA binding were revealed. These results suggest that while CYP enzyme activity and gene expression were affected by the HDAC inhibitors SAHA and TSA, they had no apparent influence on B[a]P DNA binding.  相似文献   

7.
8.
CYP1B1 and COMT code for the key enzymes of catecholestrogen biosynthesis and metabolism, and their polymorphisms determine the variation of enzyme activities. RFLP analysis was used to study the allele and genotype frequency distributions of CYP1B1 polymorphisms Arg48Gly, Ala119Ser, and Val432Leu, and COMT polymorphism Val158Met among 210 breast cancer patients, 138 endometrial cancer patients, and 152 healthy women. The COMT polymorphism showed no significant association with breast or endometrial cancer. For the first time, such association was observed for the CYP1B1 polymorphisms. CYP1B1 allele C (Arg48), which codes for the enzyme more active in estradiol 4-hydroxylation, was associated with higher risk of breast (OR = 3.22, CI 2.34–4.43, P = 0.000) and endometrial (OR = 2.43, CI 1.72–3.44, P = 0.000) cancer. Similar data were obtained for CYP1B1 allele G (Ala119): OR = 2.18, CI 1.58–3.01, P = 0.000 in breast cancer and OR = 2.52, CI 1.78–3.56, P = 0.000 in endometrial cancer. Risk of endometrial but not breast cancer was significantly higher in carriers of CYP1B1 genotype Val432/Val. This was explained by stronger estrogen dependence and, consequently, higher estrogen responsiveness of the endometrium as compared with the mammary gland.  相似文献   

9.
Cytochrome P450 1 (CYP1) mRNA induction patterns in three-spined stickleback (Gasterosteus aculeatus) were explored for use in environmental monitoring of aryl hydrocarbon receptor (AHR) agonists. The cDNAs of stickleback CYP1A, CYP1B1, CYP1C1, and CYP1C2 were cloned and their basal and induced expression patterns were determined in the brain, gill, liver and kidney. Also, their induction time courses were compared after waterborne exposure to a transient (indigo) or a persistent (3,3',4,4',5-pentacholorbiphenyl PCB 126) AHR agonist. The cloned stickleback CYP1s exhibited a high amino acid sequence identity compared with their zebrafish orthologs and their constitutive tissue distribution patterns largely agreed with those reported in other species. PCB 126 (100 nM) induced different CYP1 expression patterns in the four tissues, suggesting tissue-specific regulation. Both indigo (1 nM) and PCB 126 (10 nM) induced a strong CYP1 expression in gills. However, while PCB 126 gave rise to a high and persistent induction in gills and liver, induction by indigo was transient in both organs. The number of putative dioxin response elements found in each CYP1 gene promoter roughly reflected the induction levels of the genes. The high responsiveness of CYP1A, CYP1B1, and CYP1C1 observed in several organs suggests that three-spined stickleback is suitable for monitoring of pollution with AHR agonists.  相似文献   

10.
11.
Constitutive and benzo[a]pyrene (B[a]P) inducible expression of CYP1A1 and CYP1A2 in prostate cancer and normal prostate epithelial cells were examined by immunoblotting. Androgen independent prostate cancer cell lines DU145 and PC3 have constitutive expression of CYP1A and CYP1A1 and CYP1A2, respectively. Four micromolar B[a]P did not appear to induce CYP1A1 or CYP1A2 expression in DU145 or PC3 cells. The androgen dependent prostate cancer cell line, LnCap, also has constitutive expression of CYP1A1 and CYP1A2. However, both CYP1A1 and CYP1A2 are induced by treatment of LnCap cells with 4 microM B[a]P. Untreated normal prostate and primary prostate tumor cells have no detectable CYP1A1 expression. Treatment with 4 microM B[a]P induced CYP1A1 expression in both normal and primary tumor prostate cells. Constitutive CYP1A2 expression was detected in normal prostate cells with little or no induction by exposure to 4 microM B[a]P. Primary prostate tumor cells did not show constitutive expression of CYP1A2. However, CYP1A2 was induced by 4 microM B[a]P in primary prostate tumor cells. These observations indicate that hormonal and cancer specific factors affect the expression and induction of the phase I metabolic enzymes, CYP1A1 and CYP1A2 in prostate cells. These observations may be related to the potential smoking-linked higher risk of prostate cancer development and morbidity of prostate cancer patients who smoke.  相似文献   

12.
13.
14.
The overexpression of CYP1 family of enzymes is reported to be associated with development of human carcinomas. It has been well reported that CYP1A1 specific inhibitors prevents carcinogenesis. Herein, thirteen pyridine-4-yl series of chalcones were synthesized and screened for inhibition of CYP1 isoforms 1A1, 1B1 and 1A2 in Sacchrosomes? and live human HEK293 cells. The structure-activity relationship analysis indicated that chalcones bearing tri-alkoxy groups (8a and 8k) on non-heterocyclic ring displayed selective inhibition of CYP1A1 enzyme, with IC50 values of 58 and 65?nM, respectively. The 3,4,5-trimethoxy substituted derivative 8a have shown >10-fold selectivity towards CYP1A1 with respect to other enzymes of the CYP1 sub-family and >100-fold selectivity with respect to CYP2 and CYP3 family of enzymes. The potent and selective CYP1A1 inhibitor 8a displayed antagonism of B[a]P mediated activation of aromatic hydrocarbon receptor (AhR) in yeast cells, and also protected human cells from CYP1A1-mediated B[a]P toxicity in human cells. This potent and selective inhibitor of CYP1A1 enzyme have a potential for development as cancer chemopreventive agent.  相似文献   

15.
16.
Incense smoke is increasingly being recognized as a potential environmental contaminant and is linked to malignant and non-malignant respiratory diseases. The detoxification of environmental contaminants including polycyclic aromatic hydrocarbons (PAHs) involves the induction of cytochrome P-450 family enzymes (CYPs) by PAHs. However, the detoxification of PAHs also results in the generation of reactive and unstable intermediary metabolites which are implicated in the oxidative stress, DNA damage, and inflammation. It is unclear whether CYPs are similarly induced by incense smoke, which incidentally contains substantial amounts of PAHs. Here, we examined the impact of long-term incense smoke exposure on the induction of CYPs in male Wister Albino rats. Incense smoke exposure significantly induced the expression of CYP1A1, CYP1A2, and CYP1B1 mRNAs in both lung and liver tissues. The extent of CYP1A1 and CYP1B1 induction was significantly higher in the liver compared to that in the lung, while that of CYP1A2 was greater in the lung than in liver. Incense smoke exposure also increased malondialdehyde and reduced glutathione levels in lung and liver tissues, and the catalase activity in the liver tissues to significant levels. Furthermore incense smoke exposure led to a marked increase in TNF-α and IL-4 levels. The data demonstrate for the first time the capacity of incense smoke to induce CYP1 family enzymes in the target and non-target tissues. Induction of CYPs increased oxidative stress and inflammation appear to be intimately linked to promote the carcinogenesis and health complications in people chronically exposed to incense smoke.  相似文献   

17.
18.
19.
We were aimed at investigating the activation of the carcinogenic polycyclic aromatic hydrocarbon (PAH) dibenzo[a,l]pyrene (DB[a,l]P) in Chinese hamster V79 cells that express single human, rat or fish cytochrome P450 (CYP) enzymes. DB[a,l]P is detectable in environmental samples and has been characterized as the most potent carcinogenic species among all PAHs as yet tested in rodent bioassays. Metabolite profiles and metabolite-dependent cytotoxic and clastogenic activities were monitored. The total turnover of CYP-mediated transformation of DB[a,l]P was as follows: human CYP1B1>fish CYP1A1 approximately human CYP1A1>rat CYP1A2>rat CYP1A1. By contrast, enzyme forms that are not classified as being members of family CYP1, such as CYP2A6, 2E1, 2B1, and 3A4, failed to catalyze any detectable conversion of this substrate. All CYP1A1 enzymes tested formed both the K-region trans-8,9- and the trans-11,12-dihydrodiol, whereas human CYP1B1 failed to catalyze K-region activation. In cells expressing human or fish CYP1A1, human CYP1B1, and rat CYP1A2, the (-)-trans-11,12-dihydrodiol was formed enantiospecifically. DB[a,l]P-dependent cytotoxicities (EC(50)) were found in the following order: human CYP1A1 (12 nM)>fish CYP1A1 (30 nM)>human CYP1B1 (45 nM)>other forms. In addition, an appreciable micronuclei formation was detected in human CYP1A1- and 1B1-expressing cells during exposure to DB[a,l]P. Our study demonstrates that human CYP1A1, 1B1 and fish CYP1A1 are able to transform DB[a,l]P into genotoxic derivatives in appreciable amounts. In contrast, CYP enzymes from rat predominantly target the K-region of DB[a,l]P and thus are serving more a rather protective route of biotransformation. Together our data suggest that humans might be more susceptible to DB[a,l]P-induced carcinogenicity than rats.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号