首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
S100A12 is a member of the S100 protein family, which are intracellular calcium-binding proteins. Although there are many reports on the involvement of S100A12 in inflammatory diseases, its presence in osteoarthritic cartilage has not been reported. The purpose of this study was to investigate the expression of S100A12 in human articular cartilage in osteoarthritis (OA) and to evaluate the role of S100A12 in human OA chondrocytes. We analyzed S100A12 expression by immunohistochemical staining of cartilage samples obtained from OA and non-OA patients. In addition, chondrocytes were isolated from knee cartilage of OA patients and treated with recombinant human S100A12. Real-time RT-PCR was performed to analyze mRNA expression. Protein production of matrix metalloproteinase 13 (MMP-13) and vascular endothelial growth factor (VEGF) in the culture medium were measured by ELISA. Immunohistochemical analyses revealed that S100A12 expression was markedly increased in OA cartilages. Protein production and mRNA expression of MMP-13 and VEGF in cultured OA chondrocytes were significantly increased by treatment with exogenous S100A12. These increases in mRNA expression and protein production were suppressed by administration of soluble receptor for advanced glycation end products (RAGE). Both p38 mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) inhibitors also suppressed the increases in mRNA expression and protein production of MMP-13 and VEGF. We demonstrated marked up-regulation of S100A12 expression in human OA cartilages. Exogenous S100A12 increased the production of MMP-13 and VEGF in human OA chondrocytes. Our data indicate the possible involvement of S100A12 in the development of OA by up-regulating MMP-13 and VEGF via p38 MAPK and NF-κB pathways.  相似文献   

2.
Knee osteoarthritis (OA) is believed to result from high levels of contact stresses on the articular cartilage and meniscus after meniscal damage. This study investigated the effect of meniscal tears and partial meniscectomies on the peak compressive and shear stresses in the human knee joint. An elaborate three-dimensional finite element model of knee joint including bones, articular cartilages, menisci and main ligaments was developed from computed tomography and magnetic resonance imaging images. This model was used to model four types of meniscal tears and their resultant partial meniscectomies and analysed under an axial 1150 N load at 0° flexion. Three different conditions were compared: a healthy knee joint, a knee joint with medial meniscal tears and a knee joint following partial meniscectomies. The numerical results showed that each meniscal tear and its resultant partial meniscectomy led to an increase in the peak compressive and shear stresses on the articular cartilages and meniscus in the medial knee compartment, especially for partial meniscectomy. Among the four types of meniscal tears, the oblique tear resulted in the highest values of the peak compressive and shear stresses. For the four partial meniscectomies, longitudinal meniscectomy led to the largest increase in these two stresses. The lateral compartment was minimally affected by all the simulations. The results of this study demonstrate meniscal tear and its resultant partial meniscectomy has a positive impact on the maintenance of high levels of contact stresses, which may improve the progression of knee OA, especially for partial meniscectomy. Surgeons should adopt a prudent strategy to preserve the greatest amount of meniscus possible.  相似文献   

3.
The multiligand receptor for advanced glycation end products (RAGE) mediates certain chronic vascular and neurologic degenerative diseases accompanied by low-grade inflammation. RAGE ligands include S100/calgranulins, a class of low-molecular-mass, calcium-binding polypeptides, several of which are chondrocyte expressed. Here, we tested the hypothesis that S100A11 and RAGE signaling modulate osteoarthritis (OA) pathogenesis by regulating a shift in chondrocyte differentiation to hypertrophy. We analyzed human cartilages and cultured human articular chondrocytes, and used recombinant human S100A11, soluble RAGE, and previously characterized RAGE-specific blocking Abs. Normal human knee cartilages demonstrated constitutive RAGE and S100A11 expression, and RAGE and S100A11 expression were up-regulated in OA cartilages studied by immunohistochemistry. CXCL8 and TNF-alpha induced S100A11 expression and release in cultured chondrocytes. Moreover, S100A11 induced cell size increase and expression of type X collagen consistent with chondrocyte hypertrophy in vitro. CXCL8-induced, IL-8-induced, and TNF-alpha-induced but not retinoic acid-induced chondrocyte hypertrophy were suppressed by treatment with soluble RAGE or RAGE-specific blocking Abs. Last, via transfection of dominant-negative RAGE and dominant-negative MAPK kinase 3, we demonstrated that S100A11-induced chondrocyte type X collagen expression was dependent on RAGE-mediated p38 MAPK pathway activation. We conclude that up-regulated chondrocyte expression of the RAGE ligand S100A11 in OA cartilage, and RAGE signaling through the p38 MAPK pathway, promote inflammation-associated chondrocyte hypertrophy. RAGE signaling thereby has the potential to contribute to the progression of OA.  相似文献   

4.
Partial meniscectomy is believed to change the biomechanics of the knee joint through alterations in the contact of articular cartilages and menisci. Although fluid pressure plays an important role in the load support mechanism of the knee, the fluid pressurization in the cartilages and menisci has been ignored in the finite element studies of the mechanics of meniscectomy. In the present study, a 3D fibril-reinforced poromechanical model of the knee joint was used to explore the fluid flow dependent changes in articular cartilage following partial medial and lateral meniscectomies. Six partial longitudinal meniscectomies were considered under relaxation, simple creep, and combined creep loading conditions. In comparison to the intact knee, partial meniscectomy not only caused a substantial increase in the maximum fluid pressure but also shifted the location of this pressure in the femoral cartilage. Furthermore, these changes were positively correlated to the size of meniscal resection. While in the intact joint, the location of the maximum fluid pressure was dependent on the loading conditions, in the meniscectomized joint the location was predominantly determined by the site of meniscal resection. The partial meniscectomy also reduced the rate of the pressure dissipation, resulting in even larger difference between creep and relaxation times as compared to the case of the intact knee. The knee joint became stiffer after meniscectomy because of higher fluid pressure at knee compression followed by slower pressure dissipation. The present study indicated the role of fluid pressurization in the altered mechanics of meniscectomized knees.  相似文献   

5.
In the aim of bringing a contribution to role of the knee menisci and the functional connection between meniscal lesions and knee joint instability, four patients have been studied, who underwent arthroscopy for sub-acute tear of anterior cruciate ligament without clinical or morphological evidence of meniscal pathology. In these patients biopsies have been taken from one of the menisci and processed for the examination by the SEM. As control, meniscal fragments from two healthy knees have been studied from patients who underwent amputation at thigh for accidental trauma with irreparable lesion of femoral artery. In patients affected by ligamentous tear, on the meniscal surface a lot of deposited material appears, as well as many microlesions as clefts or cracking and distortion of superficial collagenous fibers. All described alteration are more evident in the central portion of menisci than in the anterior or posterior horns. The above mentioned patterns suggest a strong correlation of the knee instability due to ligamentous lesions and meniscal degenerative process which would onset before its clinical or macroscopical evidence.  相似文献   

6.
In osteoarthritis (OA), low-grade joint inflammation promotes altered chondrocyte differentiation and cartilage catabolism. S100/calgranulins share conserved calcium-binding EF-hand domains, associate noncovalently as homodimers and heterodimers, and are secreted and bind receptor for advanced glycation end products (RAGE). Chondrocyte RAGE expression and S100A11 release are stimulated by IL-1beta in vitro and increase in OA cartilage in situ. Exogenous S100A11 stimulates chondrocyte hypertrophic differentiation. Moreover, S100A11 is covalently cross-linked by transamidation catalyzed by transglutaminase 2 (TG2), itself an inflammation-regulated and redox stress-inducible mediator of chondrocyte hypertrophic differentiation. In this study, we researched mouse femoral head articular cartilage explants and knee chondrocytes, and a soluble recombinant double point mutant (K3R/Q102N) of S100A11 TG2 transamidation substrate sites. Both TG2 and RAGE knockout cartilage explants retained IL-1beta responsiveness. The K3R/Q102N mutant of S100A11 retained the capacity to bind to RAGE and chondrocytes but lost the capacity to signal via the p38 MAPK pathway or induce chondrocyte hypertrophy and glycosaminoglycans release. S100A11 failed to induce hypertrophy, glycosaminoglycan release, and appearance of the aggrecanase neoepitope NITEGE in both RAGE and TG2 knockout cartilages. We conclude that transamidation by TG2 transforms S100A11 into a covalently bonded homodimer that acquires the capacity to signal through the p38 MAPK pathway, accelerate chondrocyte hypertrophy and matrix catabolism, and thereby couple inflammation with chondrocyte activation to potentially promote OA progression.  相似文献   

7.
8.
目的:探讨经深低温冻存组织工程化软骨修复关节软骨缺损的可行性。方法:分离收集3周龄新西兰大白兔关节软骨细胞进行体外培养,接种于PGA三维支架材料上,复合物体外培养1周后冻存,冻存1个月后解冻、复苏及体外培养,1周后接种于已建立的双侧兔膝关节软骨缺损模型的膝关节软骨缺损处,并设对照组。分别于手术后4周、8周、12周行大体标本及组织观察。结果:大体观察结果表明,实验组与对照组缺损处均由软骨组织修复;组织学观察可以见到实验组和对照组关节软骨缺损处有密集的软骨细胞,均有软骨生成及基质分泌,两组差异无统计学意义。结论:应用深低温冻存组织工程化软骨修复关节软骨缺损的方法是有效可行的,为其进一步临床应用提供了实验依据。  相似文献   

9.
Advanced glycation end products are a diverse class of posttranslational modifications, stemming from reactive aldehyde reactions, that have been implicated in the pathogenesis of a number of degenerative diseases. Because advanced glycation end products are accelerated by, and result in formation of, oxygen-derived free radicals, they represent an important component of the oxidative stress hypothesis of Alzheimer disease (AD). In this study, we used in situ techniques to assess N(epsilon)-(Carboxymethyl)lysine (CML), the predominant advanced glycation end product that accumulates in vivo, along with its glycation-specific precursor hexitol-lysine, in patients with AD as well as in young and aged-matched control cases. Both CML and hexitol-lysine were increased in neurons, especially those containing intracellular neurofibrillary pathology in cases of AD. The increase in hexitol-lysine and CML in AD suggests that glycation is an early event in disease pathogenesis. In addition, because CML can result from either lipid peroxidation or advanced glycation, while hexitol-lysine is solely a product of glycation, this study, together with studies demonstrating the presence of 4-hydroxy-2-nonenal adducts and pentosidine, provides evidence of two distinct oxidative processes acting in concert in AD neuropathology. Our findings support the notion that aldehyde-mediated modifications, together with oxyradical-mediated modifications, are critical pathogenic factors in AD.  相似文献   

10.
Accelerated formation and accumulation of advanced glycation end products, as well as increased flux of glucose through polyol pathway, have been implicated in the pathogenesis of diabetic vascular complications. We investigated effects of advanced glycation end products on the levels of aldose reductase mRNA, protein, and activity in human microvascular endothelial cells. When endothelial cells were cultured with highly glycated bovine serum albumin, aldose reductase mRNA in endothelial cells demonstrated concentration-dependent elevation. The increase in aldose reductase mRNA was accompanied by elevated protein expression and enzyme activity. Significant increase in the enzyme expression was also observed when endothelial cells were cultured with serum obtained from diabetic patients with end-stage renal disease. Pretreatment of the endothelial cells with probucol or vitamin E prevented the advanced glycation end products-induced increases in aldose reductase mRNA and protein. Electrophoretic mobility shift assays using the nuclear extracts of the endothelial cells treated with advanced glycation end products showed enhancement of specific DNA binding activity for AP-1 consensus sequence. These results indicate that accelerated formation of advanced glycation end products in vivo may elicit activation of the polyol pathway, possibly via augmented oxidative stress, and amplify endothelial cell damage leading to diabetic microvascular dysfunction.  相似文献   

11.
IntroductionTo evaluate the impact of meniscal extrusion (Ext) on knee osteoarthritis (OA) structural progression and on response to strontium ranelate (SrRan) treatment at 36 months in patients with (+) or without (-) Ext, in association (+) or not (-) with bone marrow lesions (BML) in the medial compartment using X-rays (JSW) and qMRI.MethodsPatients from the qMRI substudy of the SEKOIA trial (SrRan 1 g/day, n = 113; SrRan 2 g/day, n = 105; placebo, n = 112) were stratified based on whether meniscal extrusion and/or BML were present or not in the medial compartment.ResultsIn the placebo group, Ext+ patients (n = 26) had more JSW loss (p = 0.002) and cartilage volume loss in the global knee (p = 0.034) and plateau (p = 0.005), and medial compartment (p = 0.0005) than Ext- patients (n = 86). Ext-BML+ patients (n = 18) demonstrated more JSW loss (p = 0.003) and cartilage volume loss in the global (p = 0.020) and medial femur (p = 0.055) than Ext-BML- (n = 68). Compared to Ext+ BML- (n = 14), Ext+ BML+ patients (n = 12) had more cartilage volume loss in the global femur (p = 0.028), with no change in JSW. The JSW loss (p = 0.0004) and cartilage volume loss (global knee, p = 0.033, medial compartment, p = 0.0005) were greater when Ext and BML were simultaneously present in the medial compartment. SrRan 2 g/day treatment demonstrated a reduction in OA knee structural progression with qMRI, but not with JSW, in which less cartilage volume loss was found in the plateaus (p = 0.007) in Ext+ patients (n = 15), and in the medial plateau (p = 0.046) in patients in whom both Ext and BML were co-localized.ConclusionThe findings of this study are novel and could have an impact on future strategies regarding clinical trials. Indeed, data first argue for a combined, cumulative effect of meniscal extrusion and bone marrow lesions on cartilage loss and, secondly, they showed that SrRan may have protective effects in OA patients with meniscal extrusion as well as when both meniscal extrusion and BML are co-localized.  相似文献   

12.
杨三梅  余锋  王贻坤  张龙  朱灵  张弓  刘勇  王安 《激光生物学报》2011,20(1):116-119,129
主要研究人体皮肤晚期糖基化终末产物(Advanced glycation end products,AGE)荧光光谱的检测方法,并对AGE荧光光谱在糖尿病检测中的应用价值进行评估.利用研制的AGE荧光光谱检测装置,分别对73例受试者前臂内侧皮肤组织中AGE的荧光进行检测.同时,采用酶联免疫吸附法(ELISA)对受试者血...  相似文献   

13.
Prolonged incubation of protein with reducing sugar proceeds through a series of reactions involving early stage products to the advanced glycation end products with fluorescence, brown color, and cross-linking. Known collectively as the Maillard reaction, these changes have been suggested as factors in diabetic complications and the aging process. The early stage products have been demonstrated in vivo, but evidence for the presence in vivo of the advanced glycation end products has been limited. We sought to provide immunochemical evidence by the preparation and use of polyclonal and monoclonal antibodies to these end products (Horiuchi, S., Araki, N., and Morino, Y. (1991) J. Biol. Chem. 266, 7329-7332) as probes to identify and quantitate such compounds in human lens crystallins. Neither of the antibodies reacted with extracts from infant lenses, but fractions from adult lenses showed a significant reactivity, correlating with lens age. Our findings provide the first immunochemical evidence that human lens crystallins contain advanced glycation end products and that these products increase with tissue age.  相似文献   

14.

Introduction  

Accumulation of advanced glycation end products (AGEs) in joints contributes to the pathogenesis of cartilage damage in osteoarthritis (OA). We aim to explore the potential chondroprotective effects of resveratrol on AGEs-stimulated porcine chondrocytes and cartilage explants.  相似文献   

15.
The interaction of reducing carbohydrates with proteins leads to a cascade of reactions that are known as glycation or Maillard reactions that results in the formation of advanced glycation end products. We studied the impact of incubation with various sugars for 4 weeks on the behaviour of human serum albumin incubation using CD, fluorescence, UV?CVis spectrophotometry and polyacrylamide gel electrophoresis. Three weeks of incubation of human serum albumin with sugars resulted in the formation of an intermediate state with negative CD peaks at 222 and 208 nm characteristic of ??-helix. The form also retained tertiary contacts but with altered tryptophan environment and high ANS binding indicative of molten globule state. Further incubation of human serum albumin for 4 weeks resulted in the formation of an intermediate form with negative CD peak at 217 nm, characteristic of ??-sheet, decreased ANS fluorescence and increased thioflavin T fluorescence characteristic of an aggregated state. Prolonged exposure of human serum albumin to reducing sugars thus exerts greater deleterious effects on its structure and formation of aggregates.  相似文献   

16.
17.
18.
The distribution of small proteoglycans of high relative electrophoretic mobility in cartilage of various species and of different ages was studied. Proteoglycans extracted by 4 M guanidinium chloride were purified by ion-exchange chromatography and assessed by gel electrophoresis. Proteoglycans fractionated by equilibrium density gradient centrifugation under ‘dissociative’ conditions were similarly purified and assessed. A rapid migrating population was found in articular cartilages of young humans, baboons, calfs, pigs, rabbits, rats, chickens and in mandibular and vertebral cartilages of dog-fish. It was not detected in unfractionated proteoglycans extracted from fetal rat, pig, calf, baboon and human cartilages. In baboon and human fetal cartilages of advanced gestational age, however, small amounts of the rapid population were present being detected in the low density fractions of dissociative gradients. The rapid migrating population was not found either in unfractionated or in fractionated proteoglycans obtained from articular cartilages of humans aged over 40. It was absent from human osteoarthritic cartilages but was detected even at advanced age in cartilages covering osteophytes.  相似文献   

19.
Kose S  Imamoto N  Yoneda Y 《FEBS letters》1999,453(3):327-330
Carbohydrates with reactive aldehyde and ketone groups can undergo Maillard reactions with proteins to form advanced glycation end products. Oxalate monoalkylamide was identified as one of the advanced glycation end products formed from the Maillard reaction of ascorbate with proteins. In these experiments, we have analyzed human lens proteins immunochemically for the presence of oxalate monoalkylamide. Oxalate monoalkylamide was absent in most of the very young lenses but was present in old and cataractous lenses. The highest levels were found in senile brunescent lenses. Incubation experiments using bovine lens proteins revealed that oxalate monoalkylamide could form from the ascorbate degradation products, 2,3-diketogulonate and L-threose. These data provide the first evidence for oxalate monoalkylamide in vivo and suggest that ascorbate degradation and its binding to proteins are enhanced during lens aging and cataract formation.  相似文献   

20.
Proteins modifications in diabetes may lead to early glycation products (EGPs) as well as advanced glycation end products (AGEs). Whereas no extensive studies have been carried out to assess the role of EGPs in secondary complications of diabetes, numerous investigators have demonstrated the role of AGEs. Early glycation involves attachment of glucose on ε-NH2 of lysine residues of proteins leading to generation of the Amadori product (an early glycation species). This study reports the structural and immunological characterization of EGPs of HSA because we believe that during persistent hyperglycemia the HSA, one of the major blood proteins, can undergo fast glycation. Glucose mediated generation of EGPs of HSA was quantitated as Amadori products by NBT assay and authenticated by boronate affinity chromatography and LC/MS. Compared to native HSA changes in glycated-HSA were characterized by hyperchromicity, loss in fluorescence intensity and a new peak in the FTIR profile. Immunogenicity of native- and glycated-HSA was evaluated by inducing antibodies in rabbits. Results suggest generation of neo-epitopes on glycated-HSA rendering it highly immunogenic compared to native HSA. Quantization of EGPs of HSA by authentic antibodies against HSA-EGPs can be used as marker for early detection of the initiation/progression of secondary complications of diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号