首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Werner syndrome (WS) is an autosomal recessive disorder characterized by premature onset of a number of age-related diseases. The gene for WS, WRN, has been mapped to the 8p 11.1-21.1 region with further localization through linkage disequilibrium mapping. Here we present the results of linkage disequilibrium and ancestral haplotype analyses of 35 markers to further refine the location of WRN. We identified an interval in this region in which 14 of 18 markers tested show significant evidence of linkage disequilibrium in at least one of the two populations tested. Analysis of extended and partial haplotypes covering 21 of the markers studied supports the existence of both obligate and probable ancestral recombinant events which localize WRN almost certainly to the interval between D8S2196 and D8S2186, and most likely to the narrower interval between D8S2168 and D8S2186. These haplotype analyses also suggest that there are multiple WRN mutations in each of the two populations under study. We also present a comparison of approaches to performing disequilibrium tests with multiallelic markers, and show that some commonly used approximations for such tests perform poorly in comparison to exact probability tests. Finally, we discuss some of the difficulties introduced by the high mutation rate at microsatellite markers which influence our ability to use ancestral haplotype analysis to localize disease genes.  相似文献   

2.
We report a theory that gives the sampling distribution of two-marker haplotypes that are linked to a rare disease mutation. The sampling distribution is generated with successive Monte Carlo realizations of the coalescence of the disease mutation having recombination and marker mutation events placed along the lineage. Given a sample of mutation-bearing, two-marker haplotypes, the maximum likelihood estimate of the location of the disease mutation can be calculated from the generated sampling distribution, provided that one knows enough about the population history in order to model it. The two-marker likelihood method is compared to a single-marker likelihood and a composite likelihood. The two-marker maximum likelihood gives smaller confidence intervals for the location of the disease locus than a comparable single-marker maximum likelihood. The composite likelihood can give biased results and the bias increases as the extent of linkage disequilibrium on mutation-bearing chromosomes decreases. Haplotype configurations exist for which the composite likelihood will fail to place the disease locus in the correct marker interval.  相似文献   

3.
Transmission/Disequilibrium Tests for Extended Marker Haplotypes   总被引:11,自引:0,他引:11       下载免费PDF全文
A generalization of the transmission/disequilibrium test to detect association between polymorphic markers and discrete or quantitative traits is discussed, with particular emphasis on marker haplotypes formed by several adjacent loci. Furthermore, strategies for testing haplotype association, using methods from spatial statistics, are developed. This approach compares the "similarity" of transmitted and untransmitted haplotypes, with the aim of determining the regions where there is greater similarity within the transmitted set. This arises from the fact that, although the original haplotypes carrying the mutation will be broken down by recombination, there may be a subset of markers near the mutation that are common to many of the recombinant haplotypes. Thus, by examination of each marker in turn and by measurement of the average size of the region shared identically by state in the transmitted and untransmitted haplotypes, it may be possible to detect regions of linkage disequilibrium that encompass the susceptibility gene.  相似文献   

4.
The gene for Batten disease (juvenile-onset neuronal ceroid lipofuscinosis, or Spielmeyer-Sjögren disease), CLN3, maps to 16p11.2-12.1. Four microsatellite markers--D16S288, D16S299, D16S298, and SPN--are in strong linkage disequilibrium with CLN3 in 142 families from 16 different countries. These markers span a candidate region of approximately 2.1 cM. CLN3 is most prevalent in northern European populations and is especially enriched in the isolated Finnish population, with an incidence of 1:21,000. Linkage disequilibrium mapping was applied to further refine the localization of CLN3 in 27 Finnish families by using linkage disequilibrium data and information about the population history of Finland to estimate the distance of the closest markers from CLN3. CLN3 is predicted to lie 8.8 kb (range 6.3-13.8 kb) from D16S298 and 165.4 kb (132.4-218.1 kb) from D16S299. Enrichment of allele "6" at D16S298 (on 96% of Finnish and 92% of European CLN3 chromosomes) provides strong evidence that the same major mutation is responsible for Batten disease in Finland as in most other European countries and that it is therefore not a Finnish mutation. Genealogical studies show that Batten disease is widespread throughout the densely populated regions of Finland. The ancestors of two Finnish patients carrying rare alleles "3" and "5" at D16S298 in heterozygous form originate from the southwestern coast of Finland, and these probably represent other foreign mutations. Analysis of the number and distribution of CLN3 haplotypes from 12 European countries provides evidence that more than one mutation has arisen in Europe.  相似文献   

5.
The genetic defect causing Huntington disease (HD) has been mapped to 4p16.3 by linkage analysis using DNA markers. Two apparently contradictory classes of recombination events in HD kindreds preclude precise targeting of efforts to clone the disease gene. Here, we report a new recombination event that increases support for an internal candidate region of 2.5 Mb between D4S10 and D4S168. Analysis of 23 DNA polymorphisms in 4p16.3 revealed a complex pattern of association with the disease gene that failed to narrow the size of the candidate region. The degree of linkage disequilibrium did not show a continuous increase across the physical map, nor was a region of extreme disequilibrium identified. Markers displaying no association with the disorder were interspersed with and, in many cases, close to markers displaying significant disequilibrium. Comparison of closely spaced marker pairs on normal and HD chromosomes, as well as analysis of haplotypes across the HD region, suggest that simple recombination subsequent to a single original HD mutation cannot easily explain the pool of HD chromosomes seen today. A number of different mechanisms could contribute to the diversity of haplotypes observed on HD chromosomes, but it is likely that there has been more than one and possibly several independent origins of the HD mutation.  相似文献   

6.
DMLE+: Bayesian linkage disequilibrium gene mapping   总被引:6,自引:0,他引:6  
SUMMARY: The program DMLE+ allows Bayesian inference of the location of a gene carrying a mutation influencing a discrete trait (such as a disease) and/or other parameters of interest (such as mutation age) based on the observed linkage disequilibrium at multiple genetic markers. DMLE+ uses either individual marker genotypes, or haplotypes, integrates over uncertain population allele frequencies, and can incorporate prior information about gene location from an annotated human genome sequence. AVAILABILITY: DMLE+ is available in both Windows GUI and portable UNIX command line versions at http://dmle.org.  相似文献   

7.
Recent genome scans have established the presence of a major psoriasis-susceptibility locus in the human leukocyte antigen (HLA) complex on chromosome 6p21.3. To narrow the interval for candidate gene testing, we performed a linkage-disequilibrium analysis of 339 families, with the use of 62 physically mapped microsatellite markers spanning the major histocompatibility complex (MHC). As detected by use of the transmission/disequilibrium test (TDT), individual markers yielded significant linkage disequilibrium across most of the MHC. However, the strongest evidence for marker-trait disequilibrium was found in an approximately 300-kb region extending from the MICA gene to the corneodesmosin gene. Maximum-likelihood haplotypes were constructed across the entire MHC in the original sample and across a 1.2-Mb region of the central MHC in an expanded sample containing 139 additional families. Short (two- to five-marker) haplotypes were subjected to the TDT using a "moving-window" strategy that reduced the variability of TDT P values relative to the single-locus results. Furthermore, the expanded sample yielded a sharp peak of evidence for linkage disequilibrium that spanned approximately 170 kb and that was centered 100 kb telomeric to HLA-C. The 1.2-Mb interval was further dissected by means of recombinant ancestral haplotype analysis. This analysis identified risk haplotype 1 (RH1), which is a 60-kb fragment of ancestral haplotype 57.1, on all identifiable HLA risk haplotypes. One of these haplotypes exhibits significant linkage disequilibrium with psoriasis but does not carry Cw6, which is the HLA allele most strongly associated with the disease. These results demonstrate that RH1 is highly likely to carry the disease allele at PSORS1, and they exclude HLA-C and corneodesmosin with a high degree of confidence.  相似文献   

8.
Linkage disequilibrium in the North American Holstein population   总被引:2,自引:0,他引:2  
Linkage disequilibrium was estimated using 7119 single nucleotide polymorphism markers across the genome and 200 animals from the North American Holstein cattle population. The analysis of maternally inherited haplotypes revealed strong linkage disequilibrium ( r 2   >   0.8) in genomic regions of ∼50 kb or less. While linkage disequilibrium decays as a function of genomic distance, genomic regions within genes showed greater linkage disequilibrium and greater variation in linkage disequilibrium compared with intergenic regions. Identification of haplotype blocks could characterize the most common haplotypes. Although maximum haplotype block size was over 1 Mb, mean block size was 26–113 kb by various definitions, which was larger than that observed in humans (∼10 kb). Effective population size of the dairy cattle population was estimated from linkage disequilibrium between single nucleotide polymorphism marker pairs in various haplotype ranges. Rapid reduction of effective population size of dairy cattle was inferred from linkage disequilibrium in recent generations. This result implies a loss of genetic diversity because of the high rate of inbreeding and high selection intensity in dairy cattle. The pattern observed in this study indicated linkage disequilibrium in the current dairy cattle population could be exploited to refine mapping resolution. Changes in effective population size during past generations imply a necessity of plans to maintain polymorphism in the Holstein population.  相似文献   

9.
There is great expectation that the levels of association found between genetic markers and disease status will play a role in the location of disease genes. This expectation follows from regarding association as being proportional to linkage disequilibrium and therefore inversely related to recombination value. For disease genes with more than two alleles, the association measure is instead a weighted average of linkage disequilibria, with the weights depending on allele frequencies and genotype susceptibilities at the disease loci. There is no longer a simple relationship, even in expectation, with recombination. We adopt a general framework to examine association mapping methods which helps to clarify the nature of case-control and transmission/disequilibrium-type tests and reveals the relationship between measures of association and coefficients of linkage disequilibrium. In particular, we can show the consequences of additive and nonadditive effects at the trait locus on the behavior of these tests. These concepts have a natural extension to marker haplotypes. The association of two-locus marker haplotypes with disease phenotype depends on a weighted average of three-locus disequilibria (two markers with each disease locus). It is likely that these two-marker analyses will provide additional information in association mapping studies.  相似文献   

10.
A QTL affecting clinical mastitis and/or somatic cell score (SCS) has been reported previously on chromosome 9 from studies in 16 families from the Swedish Red and White (SRB), Finnish Ayrshire (FA) and Danish Red (DR) breeds. In order to refine the QTL location, 67 markers were genotyped over the whole chromosome in the 16 original families and 18 additional half-sib families. This enabled linkage disequilibrium information to be used in the analysis. Data were analysed by an approach that combines information from linkage and linkage disequilibrium, which allowed the QTL affecting clinical mastitis to be mapped to a small interval (<1 cM) between the markers BM4208 and INRA084 . This QTL showed a pleiotropic effect on SCS in the DR and SRB breeds. Haplotypes associated with variations in mastitis resistance were identified. The haplotypes were predictive in the general population and can be used in marker-assisted selection. Pleiotropic effects of the mastitis QTL were studied for three milk production traits and eight udder conformation traits. This QTL was also associated with yield traits in DR but not in FA or SRB. No QTL were found for udder conformation traits on chromosome 9.  相似文献   

11.
Forty-one Spanish families with polycystic kidney disease 1 (PKD1) were studied for evidence of linkage disequilibrium between the disease locus and six closely linked markers. Four of these loci--three highly polymorphic microsatellites (SM6, CW3, and CW2) and an RFLP marker (BLu24)--are described for the first time in this report. Overall the results reveal many different haplotypes on the disease-carrying chromosome, suggesting a variety of independent PKD1 mutations. However, linkage disequilibrium was found between BLu24 and PKD1, and this was corroborated by haplotype analysis including the microsatellite polymorphisms. From this analysis a group of closely related haplotypes, consisting of four markers, was found on 40% of PKD1 chromosomes, although markers flanking this homogeneous region showed greater variability. This study has highlighted an interesting subpopulation of Spanish PKD1 chromosomes, many of which have a common origin, that may be useful for localizing the PKD1 locus more precisely.  相似文献   

12.
OBJECTIVES: Linkage disequilibrium (LD) between closely spaced SNPs can be accommodated in linkage analysis by specifying the multi-SNP haplotype frequencies, if known. Phased haplotypes in candidate regions can provide gold standard haplotype frequency estimates, and may be of inherent interest as markers. We evaluated the effects of different methods of haplotype frequency estimation, and the use of marker phase information, on linkage analysis of a multi-SNP cluster in a candidate region for Alzheimer's disease (AD). METHODS: We performed parametric linkage analysis of a five-SNP cluster in extended pedigrees to compare the use of: (1) haplotype frequencies estimated by molecular phase determination, maximum likelihood estimation, or by assuming linkage equilibrium (LE); (2) AD families or controls as the frequency source; and (3) unphased or molecularly phased SNP data. RESULTS: There was moderate to strong pairwise LD among the five SNPs. Falsely assuming LE substantially inflated the LOD score, but the method of haplotype frequency estimation and particular sample used made little difference provided that LD was accommodated. Use of phased haplotypes produced a modest increase in the LOD score over unphased SNPs. CONCLUSIONS: Ignoring LD between markers can lead to substantially inflated evidence for linkage in LOD score analysis of extended pedigrees with missing data. Use of marker phase information in linkage analysis may be important in disease studies where the costs of family recruitment and phenotyping greatly exceed the costs of phase determination.  相似文献   

13.
The major histocompatibility complex (MHC) shows a remarkable conservation of particular HLA antigens and haplotypes in linkage disequilibrium in most human populations, suggesting the existence of a convergent evolution. A recent example of such conservation is the association of particular HLA haplotypes with the HFE mutations. With the objective of exploring the significance of that association, the present paper offers an analysis of the linkage disequilibrium between HLA alleles or haplotypes and the HFE mutations in a Portuguese population. Allele and haplotype associations between HLA and HFE mutations were first reviewed in a population of 43 hemochromatosis families. The results confirmed the linkage disequilibrium of the HLA haplotype HLA-A3-B7 and the HLA-A29 allele, respectively, with the HFE mutations C282Y and H63D. In order to extend the study of the linkage disequilibrium between H63D and the HLA-A29-containing haplotypes in a normal, random population, an additional sample of 398 haplotypes was analyzed. The results reveal significant linkage disequilibrium between the H63D mutation and all HLA-A29-containing haplotypes, favoring the hypothesis of a co-selection of H63D and the HLA-A29 allele itself. An insight into the biological significance of this association is given by the finding of significantly higher CD8(+) T-lymphocyte counts in subjects simultaneously carrying the H63D mutation and the HLA-A29 allele.  相似文献   

14.
Hereditary neuralgic amyotrophy (HNA) is an autosomal dominant disorder that is associated with episodic recurrent brachial plexus neuropathy. A mutation for HNA maps to chromosome 17q25. To refine the HNA locus further, we carried out genetic linkage studies in seven pedigrees with a high density set of DNA markers from chromosome 17q25. All pedigrees demonstrated linkage to chromosome 17q25, and an analysis of recombinant events placed the HNA locus within an interval of approximately 1 Mb flanked by markers D17S722 and D17S802. In order to test the power of linkage disequilibrium mapping, we compared genotypes of 12 markers from seven pedigrees that were from the United States and that showed linkage to chromosome 17q25. The haplotypes identified a founder effect in six of the seven pedigrees with a minimal shared haplotype that further refines the HNA locus to an interval of approximately 500 kb. These findings suggest that, for the pedigrees from the United States, there are at least two different mutations in the HNA gene.  相似文献   

15.
Linkage disequilibrium, D, between a polymorphic disease and mapped markers can, in principle, be used to help find the map position of the disease gene. Likelihoods are therefore derived for the value of D conditional on the observed number of haplotypes in the sample and on the population parameter Nc, where N is the effective population size and c the recombination fraction between the disease and marker loci. The likelihood is computed explicitly for the case of two loci with heterozygote superiority and, more generally, by computer simulations assuming a steady state of constant population size and selective pressures or neutrality. It is found that the likelihood is, in general, not very dependent on the degree of selection at the loci and is very flat. This suggests that precise information on map position will not be obtained from estimates of linkage disequilibrium.  相似文献   

16.
Multilocus analysis of single nucleotide polymorphism haplotypes is a promising approach to dissecting the genetic basis of complex diseases. We propose a coalescent-based model for association mapping that potentially increases the power to detect disease-susceptibility variants in genetic association studies. The approach uses Bayesian partition modelling to cluster haplotypes with similar disease risks by exploiting evolutionary information. We focus on candidate gene regions with densely spaced markers and model chromosomal segments in high linkage disequilibrium therein assuming a perfect phylogeny. To make this assumption more realistic, we split the chromosomal region of interest into sub-regions or windows of high linkage disequilibrium. The haplotype space is then partitioned into disjoint clusters, within which the phenotype–haplotype association is assumed to be the same. For example, in case-control studies, we expect chromosomal segments bearing the causal variant on a common ancestral background to be more frequent among cases than controls, giving rise to two separate haplotype clusters. The novelty of our approach arises from the fact that the distance used for clustering haplotypes has an evolutionary interpretation, as haplotypes are clustered according to the time to their most recent common ancestor. Our approach is fully Bayesian and we develop a Markov Chain Monte Carlo algorithm to sample efficiently over the space of possible partitions. We compare the proposed approach to both single-marker analyses and recently proposed multi-marker methods and show that the Bayesian partition modelling performs similarly in localizing the causal allele while yielding lower false-positive rates. Also, the method is computationally quicker than other multi-marker approaches. We present an application to real genotype data from the CYP2D6 gene region, which has a confirmed role in drug metabolism, where we succeed in mapping the location of the susceptibility variant within a small error.  相似文献   

17.
Genetic linkage studies based on pedigree data have limited resolution, because of the relatively small number of segregations. Disequilibrium mapping, which uses population associations to infer the location of a disease mutation, provides one possible strategy for narrowing the candidate region. The coalescent process provides a model for the ancestry of a sample of disease alleles, and recombination events between disease locus and marker may be placed on this ancestral phylogeny. These events define the recombinant classes, the sets of sampled disease copies descending from the meiosis at which a given recombination occurred. We show how Monte Carlo generation of the recombinant classes leads to a linkage likelihood for fine-scale mapping from disease haplotypes. We compare single-marker disequilibrium mapping with interval-disequilibrium mapping and discuss how the approach may be extended to multipoint-disequilibrium mapping. The method and its properties are illustrated with an example of simulated data, constructed to be typical of fine-scale mapping of a rare disease in the Japanese population. The method can take into account known features of population history, such as changing patterns of population growth.  相似文献   

18.
Strong linkage disequilibrium (LD) was found between DNA marker XV2c and the cystic fibrosis (CF) locus (delta = 0.46) and between DNA marker KM19 and CF (delta = 0.67) in 157 CF and 138 normal chromosomes from U.S. Caucasians. DNA haplotypes with nine polymorphic sites were created in 54 Caucasian families. There is a strong LD between the haplotypes and the presence of the mutant CF genes. This implies that the DNA polymorphisms examined are close to the CF gene and that one mutation of the CF gene predominates in the Caucasian population. Haplotype analysis can also be used to refine estimates of CF carrier risk in Caucasians. Data for XV2c and MET markers in 16 American black patients and their families revealed a different haplotype distribution and LD pattern with the CF locus. These data suggest that racial admixture alone does not explain the occurrence of CF in American blacks and that multiple alleles of the CF gene may exist in this population.  相似文献   

19.
Gomez-Raya L 《Genetics》2012,191(1):195-213
Maximum likelihood methods for the estimation of linkage disequilibrium between biallelic DNA-markers in half-sib families (half-sib method) are developed for single and multifamily situations. Monte Carlo computer simulations were carried out for a variety of scenarios regarding sire genotypes, linkage disequilibrium, recombination fraction, family size, and number of families. A double heterozygote sire was simulated with recombination fraction of 0.00, linkage disequilibrium among dams of δ=0.10, and alleles at both markers segregating at intermediate frequencies for a family size of 500. The average estimates of δ were 0.17, 0.25, and 0.10 for Excoffier and Slatkin (1995), maternal informative haplotypes, and the half-sib method, respectively. A multifamily EM algorithm was tested at intermediate frequencies by computer simulation. The range of the absolute difference between estimated and simulated δ was between 0.000 and 0.008. A cattle half-sib family was genotyped with the Illumina 50K BeadChip. There were 314,730 SNP pairs for which the sire was a homo-heterozygote with average estimates of r2 of 0.115, 0.067, and 0.111 for half-sib, Excoffier and Slatkin (1995), and maternal informative haplotypes methods, respectively. There were 208,872 SNP pairs for which the sire was double heterozygote with average estimates of r2 across the genome of 0.100, 0.267, and 0.925 for half-sib, Excoffier and Slatkin (1995), and maternal informative haplotypes methods, respectively. Genome analyses for all possible sire genotypes with 829,042 tests showed that ignoring half-sib family structure leads to upward biased estimates of linkage disequilibrium. Published inferences on population structure and evolution of cattle should be revisited after accommodating existing half-sib family structure in the estimation of linkage disequilibrium.  相似文献   

20.
Genetic analyses of multiple restriction fragment length polymorphisms, revealed by a single DNA probe containing the switch region of the immunoglobulin constant heavy-chain (IgCH) mu gene, are presented here in detail. Five of the polymorphic loci segregate in complete linkage with IgCH allotypic markers, while one appears to be located at more than 10 centimorgans from the IgCH region. A study of over 100 random haplotypes typed at eight linked loci, including the Ig switch polymorphisms and the classical Gm-Am allotypes, allowed us to construct an evolutionary tree by which each haplotypic variant can be derived one from the other either by single-step mutation or by recombination. A few of the recombinant haplotypes appeared to carry large DNA duplications that could be explained by unequal crossing over; others might postulate gene-conversion events. Linkage disequilibria observed between the IgCH-linked loci were compared with expected ones. A heterogeneous distribution of recombination rates is clearly documented, a "hot" region of recombination being present between the gamma 2 and switch alpha 2 loci.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号