首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The gene of high molecular weight, multiheme cytochrome c (Hmc) from the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough has been overexpressed in Desulfovibrio desulfuricans G200. The recombinant protein has been purified. Its molecular weight (65,600), amino acid composition, and NH2-terminal sequence were found to be identical to those of the wild-type protein. The recombinant protein has been spectroscopically characterized (optical spectrum, EPR, circular dichroism) and compared to the wild-type protein. We have found 16 hemes per molecule by iron analysis and the pyridine hemochrome test. Both high- and low-spin features were observed in the EPR spectrum. A detailed spin quantitation analysis indicates 1 or 2 high-spin hemes and 14 or 15 low-spin hemes per molecule. The redox potentials of the hemes determined by voltammetric techniques gave an average of three different values, 0, -100, and -250 mV (versus NHE), for the wild-type and the recombinant cytochrome. The low potential values are similar to the values observed for the bis(histidinyl) coordinated hemes of cytochrome c3. A comparison of the arrangement of heme binding sites and coordinated histidines in the amino acid sequences of cytochrome c3 and Hmc has shown that the latter contains four domains, three of which are complete c3-like domains, while the fourth represents an incomplete c3-like domain which may contain His-Met coordinated hemes. These data are in agreement with the detailed study of the number and types of hemes reported in this paper.  相似文献   

2.
Sulfate-reducing bacteria contain a variety of multi-heme c-type cytochromes. The cytochrome of highest molecular weight (Hmc) contains 16 heme groups and is part of a transmembrane complex involved in the sulfate respiration pathway. We present the 2.42 A resolution crystal structure of the Desulfovibrio vulgaris Hildenborough cytochrome Hmc and a structural model of the complex with its physiological electron transfer partner, cytochrome c(3), obtained by NMR restrained soft-docking calculations. The Hmc is composed of three domains, which exist independently in different sulfate-reducing species, namely cytochrome c(3), cytochrome c(7), and Hcc. The complex involves the last heme at the C-terminal region of the V-shaped Hmc and heme 4 of cytochrome c(3), and represents an example for specific cytochrome-cytochrome interaction.  相似文献   

3.
The nucleotide sequence of the hmc operon from Desulfovibrio vulgaris subsp. vulgaris Hildenborough indicated the presence of eight open reading frames, encoding proteins Orf1 to Orf6, Rrf1, and Rrf2. Orf1 is the periplasmic, high-molecular-weight cytochrome (Hmc) containing 16 c-type hemes and described before (W. B. R. Pollock, M. Loutfi, M. Bruschi, B. J. Rapp-Giles, J. D. Wall, and G. Voordouw, J. Bacteriol. 173:220-228, 1991). Orf2 is a transmembrane redox protein with four iron-sulfur clusters, as indicated by its similarity to DmsB from Escherichia coli. Orf3, Orf4, and Orf5 are all highly hydrophobic, integral membrane proteins with similarities to subunits of NADH dehydrogenase or cytochrome c reductase. Orf6 is a cytoplasmic redox protein containing two iron-sulfur clusters, as indicated by its similarity to the ferredoxin domain of [Fe] hydrogenase from Desulfovibrio species. Rrf1 belongs to the family of response regulator proteins, while the function of Rrf2 cannot be derived from the gene sequence. The expression of individual genes in E. coli with the T7 system confirmed the open reading frames for Orf2, Orf6, and Rrf1. Deletion of 0.4 kb upstream from orf1 abolished the expression of Hmc in D. desulfuricans G200, indicating this region to contain the hmc operon promoter. The expression of two truncated hmc genes in D. desulfuricans G200 resulted in stable periplasmic c-type cytochromes, confirming the domain structure of Hmc. We propose that Hmc and Orf2 to Orf6 form a transmembrane protein complex that allows electron flow from the periplasmic hydrogenases to the cytoplasmic enzymes that catalyze the reduction of sulfate. The domain structure of Hmc may be required to allow interaction with multiple hydrogenases.  相似文献   

4.
The crystal structure of the high molecular mass cytochrome c HmcA from Desulfovibrio vulgaris Hildenborough is described. HmcA contains the unprecedented number of sixteen hemes c attached to a single polypeptide chain, is associated with a membrane-bound redox complex, and is involved in electron transfer from the periplasmic oxidation of hydrogen to the cytoplasmic reduction of sulfate. The structure of HmcA is organized into four tetraheme cytochrome c(3)-like domains, of which the first is incomplete and contains only three hemes, and the final two show great similarity to the nine-heme cytochrome c from Desulfovibrio desulfuricans. An isoleucine residue fills the vacant coordination space above the iron atom in the five-coordinated high-spin Heme 15. The characteristics of each of the tetraheme domains of HmcA, as well as its surface charge distribution, indicate this cytochrome has several similarities with the nine-heme cytochrome c and the Type II cytochrome c(3) molecules, in agreement with their similar genetic organization and mode of reactivity and further support an analogous physiological function for the three cytochromes. Based on the present structure, the possible electron transfer sites between HmcA and its redox partners (namely Type I cytochrome c(3) and other proteins of the Hmc complex), as well as its physiological role, are discussed.  相似文献   

5.
The nature of the axial ligands of a heme group is an important factor in maintaining the oxidation-reduction potential of a c-type cytochrome. Cytochrome c3 from Desulfovibrio vulgaris Hildenborough contains four bis-histidinyl coordinated hemes with low oxidation-reduction potentials. Site-directed mutagenesis was used to generate a mutant in which histidine 70, the sixth axial ligand of heme 4, has been replaced by a methionine. The mutant protein was expressed in Desulfovibrio desulfuricans G200 at a level similar to the wild type cytochrome. A model for the three-dimensional structure of D. vulgaris Hildenborough cytochrome c3 was generated on the basis of the crystal structure of D. vulgaris Miyazaki cytochrome c3 in order to investigate the effects of the H70M mutation. The model, together with NMR data, suggested that methionine 70 has effectively replaced histidine 70 as the sixth axial ligand of heme 4 without significant alteration of the structure. A large increase of at least 200 mV of one of the four oxidation-reduction potentials was observed by electrochemistry and is interpreted in terms of structure/potential relationships.  相似文献   

6.
BACKGROUND: Haem-containing proteins are directly involved in electron transfer as well as in enzymatic functions. The nine-haem cytochrome c (9Hcc), previously described as having 12 haem groups, was isolated from cells of Desulfovibrio desulfuricans ATCC 27774, grown under both nitrate- and sulphate-respiring conditions. RESULTS: Models for the primary and three-dimensional structures of this cytochrome, containing 292 amino acid residues and nine haem groups, were derived using the multiple wavelength anomalous dispersion phasing method and refined using 1.8 A diffraction data to an R value of 17.0%. The nine haem groups are arranged into two tetrahaem clusters, with Fe-Fe distances and local protein fold similar to tetrahaem cytochromes c3, while the extra haem is located asymmetrically between the two clusters. CONCLUSIONS: This is the first known three-dimensional structure in which multiple copies of a tetrahaem cytochrome c3-like fold are present in the same polypeptide chain. Sequence homology was found between this cytochrome and the C-terminal region (residues 229-514) of the high molecular weight cytochrome c from Desulfovibrio vulgaris Hildenborough (DvH Hmc). A new haem arrangement in domains III and IV of DvH Hmc is proposed. Kinetic experiments showed that 9Hcc can be reduced by the [NiFe] hydrogenase from D. desulfuricans ATCC 27774, but that this reduction is faster in the presence of tetrahaem cytochrome c3. As Hmc has never been found in D. desulfuricans ATCC 27774, we propose that 9Hcc replaces it in this organism and is therefore probably involved in electron transfer across the membrane.  相似文献   

7.
The hmc operon of Desulfovibrio vulgaris subsp. vulgaris Hildenborough encodes a transmembrane redox protein complex (the Hmc complex) that has been proposed to catalyze electron transport linking periplasmic hydrogen oxidation to cytoplasmic sulfate reduction. We have replaced a 5-kb DNA fragment containing most of the hmc operon by the cat gene. The resulting chloramphenicol-resistant mutant D. vulgaris H801 grows normally when lactate or pyruvate serve as electron donors for sulfate reduction. Growth with hydrogen as electron donor for sulfate reduction (acetate and CO2 as the carbon source) is impaired. These results confirm the importance of the Hmc complex in electron transport from hydrogen to sulfate. Mutant H801 is also deficient in low-redox-potential niche establishment. On plates, colony development takes 14 days longer than colony development of the wild-type strain, when the cells use hydrogen as the electron donor. This result suggests that, in addition to transmembrane electron transport from hydrogen to sulfate, the redox reactions catalyzed by the Hmc complex are crucial in establishment of the required low-redox-potential niche that allows single cells to grow into colonies.  相似文献   

8.
《FEBS letters》1985,191(2):186-190
A second nonhomologous polypeptide in the thylakoid membrane cytochrome b-559 has been suggested by the finding of a smaller reading frame just slightly downstream from that corresponding to the 9 kDa cytochrome polypeptide that is dominant on a Coomassie-stained gel. This reading frame encoded a 39-residue polypeptide that was similar in having a central hydrophobic domain of 25–26 residues and a single His residue at the same position in the hydrophobic domain. The smallest polypeptide seen on SDS gels of the cytochrome was isolated by high-performance liquid chromatography (HPLC). The NH2-terminal sequence matched that of the downstream gene. The stoichiometry of the 2 gene products separated by HPLC was approx. 1:1, based on the molecular masses of 9.16 and 4.27 kDa calculated from the nucleotide sequence. It is concluded that the cytochrome contains both the 9.16 kDa (α) and 4.27 kDa (β) polypeptides. These data, the single His residue on each polypeptide, and the previous finding of a bis-histidine coordination, imply that the unit heme binding structure of the cytochrome is a heme cross-linked dimer. If the cytochrome contains a single heme, the dimer structure would be (αβ). If there are 2 hemes/cytochrome, the more likely structure would be (αβ)2, a tetramer consisting of 2 heme cross-linked hetero-dimers.  相似文献   

9.
Restriction fragments of genomic DNA from Desulfovibrio salexigens (ATCC 14822) containing the structural gene coding for the flavodoxin protein were identified using the entire coding region of the gene for the Desulfovibrio vulgaris (Hildenborough) flavodoxin as a probe (Krey, G.D., Vanin, E.F., and Swenson, R.P. (1988) J. Biol. Chem. 263, 15436-15443). A 1.4-kb PstI-HindIII fragment was ultimately identified which contains an open reading frame coding for a polypeptide of 146 amino acid residues that was highly homologous to the D. vulgaris flavodoxin, sharing a sequence identity of 55%. When compared to the X-ray crystal structure of the D. vulgaris protein, the homologous regions were largely confined to those portions of the protein which are in the immediate vicinity of the flavin mononucleotide cofactor binding site. Tryptophan-60 and tyrosine-98, which reside on either side of the isoalloxazine ring of the cofactor, are conserved, as are the sequences of the polypeptide loop that interacts with the phosphate moiety of the flavin. Acidic residues forming the interface of model electron-transfer complexes with certain cytochrome c proteins are retained. The flavodoxin holoprotein is over-expressed in E. coli from the cloned gene using its endogenous promoter.  相似文献   

10.
Heteronuclear NMR spectroscopy was performed to determine the solution structure of (15)N-labeled ferrocytochrome c(3) from Desulfovibrio vulgaris Miyazaki F (DvMF). Although the folding of the reduced cytochrome c(3) in solution was similar to that of the oxidized one in the crystal structure, the region involving hemes 1 and 2 was different. The redox-coupled conformational change is consistent with the reported solution structure of D. vulgaris Hildenborough ferrocytochrome c(3), but is different from those of other cytochromes c(3). The former is homologous with DvMF cytochrome c(3) in amino acid sequence. Small displacements of hemes 1 and 2 relative to hemes 3 and 4 were observed. This observation is consistent with the unusual behavior of the 2(1)CH(3) signal of heme 3 reported previously. As shown by the (15)N relaxation parameters of the backbone, a region between hemes 1 and 2 has more flexibility than the other regions. The results of this work strongly suggest that the cooperative reduction of hemes 1 and 2 is based on the conformational changes of the C-13 propionate of heme 1 and the aromatic ring of Tyr43, and the interaction between His34 and His 35 through covalent and coordination bonds.  相似文献   

11.
J A Tan  J A Cowan 《Biochemistry》1990,29(20):4886-4892
A high molecular weight multiheme c-type cytochrome from the sulfate-reducing bacterium Desulfovibrio vulgaris (Hildenborough) has been spectroscopically characterized and compared with the tetraheme cytochrome c3. The protein contains a pentacoordinate high-spin heme (gz 6.0) and two hexacoordinate low-spin hemes (gz 2.95, gy 2.27, gx 1.48). From analysis of the g values for the low-spin hemes by the procedure of Blumberg and Peisach (Palmer, 1983) and comparison with with the optical spectra from a variety of c-type cytochromes, it is likely that these low-spin hemes are bound by two histidine residues. The NO derivative displayed typical rhombic EPR features (gx 2.07, gz 2.02, gy 1.99). Addition of azide does not lead to coupling between heme chromophores, but the ligand is accessible to the high-spin heme. The use of a glassy-carbon electrode to perform direct (no promoter) electrochemistry on the cytochrome is illustrated. Differential pulse polarography of the native protein gave two waves with reduction potentials of -59 (5) and -400 (8) mV (versus NHE). The cyanide adduct gave two waves with reduction potentials of -263 (8) and -401 (8) mV. The cytochrome was found to catalyze the reduction of nitrite and hydroxylamine.  相似文献   

12.
The gene encoding cytochrome c3 (cyc-gene) from Desulfovibrio vulgaris (Hildenborough) was cloned by G. Voordouw and S. Brenner (1986, Eur. J. Biochem. 159, 347-351). The gene was expressed in Escherichia coli but only the apoprotein was observed (W. Pollock, P. Chemerika, M. Forrest, J. Beatty, and G. Voordouw, 1989, J. Gen. Microbiol. 135, 2319-2328). In this study, the cyc-gene was cloned into the broad host range vector pRK404 and then introduced into the purple photosynthetic bacterium Rhodobacter sphaeroides. Cells grown anaerobically produced a significant amount of recombinant cytochrome c3. The purified protein contains four hemes and the N-terminal protein sequence is identical to the published sequence of the native cytochrome c3. Thus, R. sphaeroides was able to produce the mature cytochrome c3 by combining the four steps of protein synthesis, exporting the protein across the membrane, cleaving the signal peptide, and inserting four hemes. It appears that the D. vulgaris promoter is not very efficiently used by R. sphaeroides. However, replacement of the promoter with a R. sphaeroides promoter should result in cytochrome c3 overproduction.  相似文献   

13.
In the anaerobic sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough (DvH), the genome sequencing revealed the presence of three operons encoding formate dehydrogenases. fdh1 encodes an alphabetagamma trimeric enzyme containing 11 heme binding sites; fdh2 corresponds to an alphabetagamma trimeric enzyme with a tetrahemic subunit; fdh3 encodes an alphabeta dimeric enzyme. In the present work, spectroscopic measurements demonstrated that the reduction of cytochrome c(553) was obtained in the presence of the trimeric FDH2 and not with the dimeric FDH3, suggesting that the tetrahemic subunit (FDH2C) is essential for the interaction with this physiological electron transfer partner. To further study the role of the tetrahemic subunit, the fdh2C gene was cloned and expressed in Desulfovibrio desulfuricans G201. The recombinant FDH2C was purified and characterized by optical and NMR spectroscopies. The heme redox potentials measured by electrochemistry were found to be identical in the whole enzyme and in the recombinant subunit, indicating a correct folding of the recombinant protein. The mapping of the interacting site by 2D heteronuclear NMR demonstrated a similar interaction of cytochrome c(553) with the native enzyme and the recombinant subunit. The presence of hemes c in the gamma subunit of formate dehydrogenases is specific of these anaerobic sulfate-reducing bacteria and replaces heme b subunit generally found in the enzymes involved in anaerobic metabolisms.  相似文献   

14.
 A comparative study of electron transfer between the 16 heme high molecular mass cytochrome (Hmc) from Desulfovibrio vulgaris Hildenborough and the [Fe] and [NiFe] hydrogenases from the same organism was carried out, both in the presence and in the absence of catalytic amounts of cytochrome c 3. For comparison, this study was repeated with the [NiFe] hydrogenase from D. gigas. Hmc is very slowly reduced by the [Fe] hydrogenase, but faster by either of the two [NiFe] hydrogenases. In the presence of cytochrome c 3, in equimolar amounts to the hydrogenases, the rates of electron transfer are significantly increased and are similar for the three hydrogenases. The results obtained indicate that the reduction of Hmc by the [Fe] or [NiFe] hydrogenases is most likely mediated by cytochrome c 3. A similar study with D. vulgaris Hildenborough cytochrome c 553 shows that, in contrast, this cytochrome is reduced faster by the [Fe] hydrogenase than by the [NiFe] hydrogenases. However, although catalytic amounts of cytochrome c 3 have no effect in the reduction by the [Fe] hydrogenase, it significantly increases the rate of reduction by the [NiFe] hydrogenases. Received: 14 April 1998 / Accepted: 25 June 1998  相似文献   

15.
A nonaheme cytochrome c was purified to homogeneity from the soluble and the membrane fractions of the sulfate-reducing bacterium Desulfovibrio desulfuricans Essex. The gene encoding for the protein was cloned and sequenced. The primary structure of the multiheme protein was highly homologous to that of the nonaheme cytochrome c from D. desulfuricans ATCC 27774 and to that of the 16-heme HmcA protein from Desulfovibrio vulgaris Hildenborough. The analysis of the sequence downstream of the gene encoding for the nonaheme cytochrome c from D. desulfuricans Essex revealed an open reading frame encoding for an HmcB homologue. This operon structure indicated the presence of an Hmc complex in D. desulfuricans Essex, with the nonaheme cytochrome c replacing the 16-heme HmcA protein found in D. vulgaris. The molecular and spectroscopic parameters of nonaheme cytochrome c from D. desulfuricans Essex in the oxidized and reduced states were analyzed. Upon reduction, the pI of the protein changed significantly from 8.25 to 5.0 when going from the Fe(III) to the Fe(II) state. Such redox-induced changes in pI have not been reported for cytochromes thus far; most likely they are the result of a conformational rearrangement of the protein structure, which was confirmed by CD spectroscopy. The reactivity of the nonaheme cytochrome c toward [Ni,Fe] hydrogenase was compared with that of the tetraheme cytochrome c(3); both the cytochrome c(3) and the periplasmic [Ni,Fe] hydrogenase originated from D. desulfuricans Essex. The nonaheme protein displayed an affinity and reactivity toward [Ni,Fe] hydrogenase [K(M) = 20.5 +/- 0.9 microM; v(max) = 660 +/- 20 nmol of reduced cytochrome min(-1) (nmol of hydrogenase)(-1)] similar to that of cytochrome c(3) [K(M) = 12.6 +/- 0.7 microM; v(max) = 790 +/- 30 nmol of reduced cytochrome min(-1) (nmol of hydrogenase)(-1)]. This shows that nonaheme cytochrome c is a competent physiological electron acceptor for [Ni,Fe] hydrogenase.  相似文献   

16.
To understand general aspects of stability and folding of c-type cytochromes, we have studied the folding characteristics of cytochrome c553 from Desulfovibrio vulgaris (Hildenborough). This cytochrome is structurally similar but lacks sequence homology to other heme proteins; moreover, it has an abnormally low reduction potential. Unfolding of oxidized and reduced cytochrome c553 by guanidine hydrochloride (GuHCl) was monitored by circular dichroism (CD) and Soret absorption; the same unfolding curves were obtained with both methods supporting that cytochrome c553 unfolds by an apparent two-state process. Reduced cytochrome c553 is 7(3) kJ/mol more stable than the oxidized form; accordingly, the reduction potential of unfolded cytochrome c553 is 100(20) mV more negative than that of the folded protein. In contrast to many other unfolded cytochrome c proteins, upon unfolding at pH 7.0 both oxidized and reduced heme in cytochrome c553 become high-spin. The lack of heme misligation in unfolded cytochrome c553 implies that its unfolded structure is less constrained than those of cytochromes c with low-spin, misligated hemes.  相似文献   

17.
18.
Plasmid pJRDC800-1, containing the cyc gene encoding cytochrome c3 from Desulfovibrio vulgaris subsp. vulgaris Hildenborough, was transferred by conjugation from Escherichia coli DH5 alpha to Desulfovibrio desulfuricans G200. The G200 strain produced an acidic cytochrome c3 (pI = 5.8), which could be readily separated from the Hildenborough cytochrome c3 (pI = 10.5). The latter was indistinguishable from cytochrome c3 produced by D. vulgaris subsp. vulgaris Hildenborough with respect to a number of chemical and physical criteria.  相似文献   

19.
To specify electron exchanges involving Desulfovibrio desulfuricans Norway tetra-heme cytochrome c3, the chemical modification of arginine 73 residue, was performed. Biochemical and biophysical studies have shown that the modified cytochrome retains its ability to both interact and act as an electron carrier with its redox partners, ferredoxin and hydrogenase. Moreover, the chemical modification effects on the cytochrome c3 1H NMR spectrum were similar to that induced by the presence of ferredoxin. This suggests that arginine 73 is localized on the cytochrome c3 ferredoxin interacting site. The identification of heme 4, the closest heme to arginine 73, as the ferredoxin interacting heme helps us to hypothesize about the role of the three other hemes in the molecule. A structural hypothesis for an intramolecular electron transfer pathway, involving hemes 4, 3 and 1, is proposed on the basis of the crystal structures of D. vulgaris Miyazaki and D. desulfuricans Norway cytochromes c3. The unique role of some structural features (alpha helix, aromatic residues) intervening between the heme groups, is proposed.  相似文献   

20.
The production of Desulfovibrio vulgaris Hildenborough cytochrome c(3) (M(r) 13000), which is a tetraheme cytochrome, in Escherichia coli was examined. This cytochrome was successfully produced in an E. coli strain co-expressing the ccmABCDEFGH genes involved in the cytochrome c maturation process. The apocytochrome c(3) was matured in either anaerobic or aerobic conditions, but aerobic growth in the presence of delta-aminolevulinic acid was found to be best for cytochrome c(3) production. Site-directed mutagenesis was performed to investigate the effect of the presence of four amino acids in between the two cysteines of the heme binding sites 2 and 4 on the maturation of holocytochrome c(3) in E. coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号