共查询到20条相似文献,搜索用时 0 毫秒
1.
Role of protein phosphorylation in neuronal signal transduction 总被引:23,自引:0,他引:23
Protein phosphorylation is involved in the regulation of a wide variety of physiological processes in the nervous system. Studies in which purified protein kinases or kinase inhibitors have been microinjected into defined cells while a specific response is monitored have demonstrated that protein phosphorylation is both necessary and sufficient to mediate responses of excitable cells to extracellular signals. The precise molecular mechanisms involved in neuronal signal transduction processes can be further elucidated by identification and characterization of the substrate proteins for the various protein kinases. The roles of three such substrate proteins in signal transduction are described in this article: 1) synapsin I, whose phosphorylation increases neurotransmitter release and thereby modulates synaptic transmission presynaptically; 2) the nicotinic acetylcholine receptor, whose phosphorylation increases its rate of desensitization and thereby modulates synaptic transmission postsynaptically; and 3) DARPP-32, whose phosphorylation converts it to a protein phosphatase inhibitor and which thereby may mediate interactions between dopamine and other neurotransmitter systems. The characterization of the large number of additional phosphoproteins that have been found in the nervous system should elucidate many additional molecular mechanisms involved in signal transduction in neurons. 相似文献
2.
Background
Dominant mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common genetic cause of Parkinson''s disease, however, the underlying pathogenic mechanisms are poorly understood. Several in vitro studies have shown that the most frequent mutation, LRRK2(G2019S), increases kinase activity and impairs neuronal survival. LRRK2 has been linked to the mitogen-activated protein kinase kinase kinase family and the receptor-interacting protein kinases based on sequence similarity within the kinase domain and in vitro substrate phosphorylation.Methodology/Principal Findings
We used an unbiased proteomic approach to identify the kinase signaling pathways wherein LRRK2 may be active. By incubation of protein microarrays containing 260 signal transduction proteins we detected four arrayed Ste20 serine/threonine kinase family members (TAOK3, STK3, STK24, STK25) as novel LRRK2 substrates and LRRK2 interacting proteins, respectively. Moreover, we found that protein kinase C (PKC) zeta binds and phosphorylates LRRK2 both in vitro and in vivo.Conclusions/Significance
Ste20 kinases and PKC zeta contribute to neuronal Tau phosphorylation, neurite outgrowth and synaptic plasticity under physiological conditions. Our data suggest that these kinases may also be involved in synaptic dysfunction and neurite fragmentation in transgenic mice and in human PD patients carrying toxic gain-of-function LRRK2 mutations. 相似文献3.
4.
Synchronized activity in ensembles of neurons recruited by excitatory afferents is thought to contribute to the coding information in the brain. However, the mechanisms by which neuronal ensembles are generated and modified are not known. Here we show that in rat hippocampal slices associative synaptic plasticity enables ensembles of neurons to change by incorporating neurons belonging to different ensembles. Associative synaptic plasticity redistributes the composition of different ensembles recruited by distinct inputs such as to specifically increase the similarity between the ensembles. These results show that in the hippocampus, the ensemble of neurons recruited by a given afferent projection is fluid and can be rapidly and persistently modified to specifically include neurons from different ensembles. This linking of ensembles may contribute to the formation of associative memories. 相似文献
5.
Par-4, discovered in a screen for genes whose expression is increased in prostate tumor cells undergoing apoptosis, participates in physiological and pathological nerve cell death. A new study, however, provides evidence for an unexpected role for Par-4 in regulating synaptic transmission in the brain: Par-4 binds to the D2 dopamine receptor (D2DR) and modulates its activity. Mice in which the function of Par-4 is disrupted exhibit impaired dopaminergic neurotransmission, resulting in a depression-like syndrome. Several other cell death-related proteins also appear to function in regulating synaptic plasticity, suggesting that a better understanding of the functions of these proteins may lead to novel therapeutic approaches for a psychiatric and neurodegenerative disorders. 相似文献
6.
7.
Stephen M. Strittmatter Timothy Vartanian Mark C. Fishman 《Developmental neurobiology》1992,23(5):507-520
Neurons exhibit a remarkable plasticity of form, both during neural development and during the subsequent remodelling of synaptic connectivity. Here we review work on GAP-43 and G0, and focus upon the thesis that their interaction may endow neurons with such plasticity. We also present new data on the role of G proteins in neurite growth, and on the interaction of GAP-43 and actin. GAP-43 is a protein induced during periods of axonal extension and highly enriched on the inner surface of the growth cone membrane. Its membrane localization is primarily due to a short amino terminal sequence which is subject to palmitoylation. Binding to actin filaments may also assist in restricting the protein to specific cellular domains. Consistent with its role as a ?plasticity protein,”? there is evidence that GAP-43 can directly alter cell shape and neurite extension, and several theses have been advanced for how it might do so. Two other prominent components of the growth cone membrane are the α and β subunits of G0. GAP-43 regulates their guanine nucleotide exchange, which is an unusual role for an intracellular protein. We speculate that GAP-43 may adjust the ?set point”? of responsiveness for G0 stimulation by receptors, thereby altering the neuronal propensity to growth, without actually causing growth. To begin to address how G protein activity affects axon growth, we have developed a means to introduce guanine nucleotide analogs into sympathetic neurons. Stimulation of G proteins with GTP-γ-S retards axon growth, whereas GDP-β-S enhances it. This is compatible with G protein registration of inhibitory signals. © 1992 John Wiley & Sons, Inc. 相似文献
8.
Calcineurin regulation of neuronal plasticity 总被引:15,自引:0,他引:15
Groth RD Dunbar RL Mermelstein PG 《Biochemical and biophysical research communications》2003,311(4):1159-1171
9.
GAP-43 as a plasticity protein in neuronal form and repair. 总被引:13,自引:0,他引:13
Neurons exhibit a remarkable plasticity of form, both during neural development and during the subsequent remodelling of synaptic connectivity. Here we review work on GAP-43 and G0, and focus upon the thesis that their interaction may endow neurons with such plasticity. We also present new data on the role of G proteins in neurite growth, and on the interaction of GAP-43 and actin. GAP-43 is a protein induced during periods of axonal extension and highly enriched on the inner surface of the growth cone membrane. Its membrane localization is primarily due to a short amino terminal sequence which is subject to palmitoylation. Binding to actin filaments may also assist in restricting the protein to specific cellular domains. Consistent with its role as a "plasticity protein," there is evidence that GAP-43 can directly alter cell shape and neurite extension, and several theses have been advanced for how it might do so. Two other prominent components of the growth cone membrane are the alpha and beta subunits of G0. GAP-43 regulates their guanine nucleotide exchange, which is an unusual role for an intracellular protein. We speculate that GAP-43 may adjust the "set point" of responsiveness for G0 stimulation by receptors, thereby altering the neuronal propensity to growth, without actually causing growth. To begin to address how G protein activity affects axon growth, we have developed a means to introduce guanine nucleotide analogs into sympathetic neurons. Stimulation of G proteins with GTP-gamma-S retards axon growth, whereas GDP-beta-S enhances it. This is compatible with G protein registration of inhibitory signals. 相似文献
10.
Growth-regulated proteins and neuronal plasticity 总被引:6,自引:0,他引:6
Karl H. Pfenninger Becky A. de la Houssaye Steve M. Helmke Santiago Quiroga 《Molecular neurobiology》1991,5(2-4):143-151
Growth-regulated proteins (GRPs) of the neuron are synthesized during outgrowth and regeneration at an increased rate and enriched in nerve growth cones. Therefore, they can be used to some degree as markers of neurite growth. However, these proteins are not unique to the growing neuron, and their properties are not known sufficiently to assign them a functional and/or causal role in the mechanisms of outgrowth. During synaptogenesis, GRPs decrease in abundance, and growth cone functions of motility and organelle assembly are being replaced by junctional contact and transmitter release. However, there is a stage during which growth cone and synaptic properties overlap to some degree. We propose that it is this overlap and its continuation that allow for synaptic plasticity in developing and adult nervous systems. We also propose a hypothesis involving (a) trophic factor(s) that might explain the regulation of synaptic sizes and collateral sprouting. Some GRPs, especially GAP43/B50/pp46/F1, are more prominent in adult brain regions of high plasticity, and they undergo change, such as phosphorylation, during long-term potentiation (LTP). Without precise functional knowledge of GRPs, it is impossible to use changes in such proteins to explain the plasticity mechanism. However, changes in these "growth markers" are likely to be an indication of sprouting activity, which would explain well the various phenomena associated with plasticity and learning in the adult. Thus, plasticity and memory may be viewed as a continuation of the developmental process into adulthood. 相似文献
11.
W. H. Gispen H. B. Nielander P. N. E. De Graan A. B. Oestreicher L. H. Schrama P. Schotman 《Molecular neurobiology》1991,5(2-4):61-85
The neuronal phosphoprotein B-50/GAP-43 has been implicated in neuritogenesis during developmental stages of the nervous system and in regenerative processes and neuronal plasticity in the adult. The protein appears to be a member of a family of acidic substrates of protein kinase C (PKC) that bind calmodulin at low calcium concentrations. Two of these substrates, B-50 and neurogranin, share the primary sequence coding for the phospho- and calmodulin-binding sites and might exert similar functions in axonal and dendritic processes, respectively. In the adult brain, B-50 is exclusively located at the presynaptic membrane. During neuritogenesis in cell culture, the protein is translocated to the growth cones, i.e., into the filopodia. In view of many positive correlations between B-50 expression and neurite outgrowth and the specific localization of B-50, a role in growth cone function has been proposed. Its phosphorylation state may regulate the local intracellular free calmodulin and calcium concentrations or vice versa. Both views link the B-50 protein to processes of signal transduction and transmitter release. 相似文献
12.
14.
15.
In the past year significant advances have been made in our understanding of the role of protein dephosphorylation in the control of neuronal function. Molecular cloning has identified a large number of serine/threonine and tyrosine protein phosphatases in the nervous system. Many of these enzymes are selectively enriched in the nervous system, some are localized to specific neurons, and yet others are expressed only during specific periods of neuronal development. The availability of purified protein phosphatases and selective inhibitors has facilitated the analysis of these enzymes and their role in the regulation of neurotransmitter receptors and ion channels. 相似文献
16.
17.
Postsynaptic actin and neuronal plasticity. 总被引:4,自引:0,他引:4
A Matus 《Current opinion in neurobiology》1999,9(5):561-565
In the adult brain, actin is concentrated in dendritic spines where it can produce rapid changes in their shape. Through various synaptic junction proteins, this postsynaptic actin is linked to neurotransmitter receptors, influencing their function and, in turn, being influenced by them. Thus, the actin cytoskeleton is emerging as a key mediator between signal transmission and anatomical plasticity at excitatory synapses. 相似文献
18.
Hebb and homeostasis in neuronal plasticity 总被引:22,自引:0,他引:22
The positive-feedback nature of Hebbian plasticity can destabilize the properties of neuronal networks. Recent work has demonstrated that this destabilizing influence is counteracted by a number of homeostatic plasticity mechanisms that stabilize neuronal activity. Such mechanisms include global changes in synaptic strengths, changes in neuronal excitability, and the regulation of synapse number. These recent studies suggest that Hebbian and homeostatic plasticity often target the same molecular substrates, and have opposing effects on synaptic or neuronal properties. These advances significantly broaden our framework for understanding the effects of activity on synaptic function and neuronal excitability. 相似文献
19.
Role of structural plasticity in signal transduction by the cryptochrome blue-light photoreceptor 总被引:1,自引:0,他引:1
Cryptochromes are blue-light photoreceptors that regulate a variety of responses such as growth and circadian rhythms in organisms ranging from bacteria to humans. Cryptochromes share a high level of sequence identity with the light-activated DNA repair enzyme photolyase. Photolyase uses energy from blue light to repair UV-induced photoproducts in DNA through cyclic electron transfer between the catalytic flavin adenine dinucleotide cofactor and the damaged DNA. Cryptochromes lack DNA repair activity, and their mechanism of signal transduction is not known. It is hypothesized that a light-dependent signaling state in cryptochromes is created as a result of an intramolecular redox reaction, resulting in conformational rearrangement and effector binding. Plant and animal cryptochromes possess 30-250 amino acid carboxy-terminal extensions beyond the photolyase-homology region that have been shown to mediate phototransduction. We analyzed the structures of C-terminal domains from an animal and a plant cryptochrome by computational, biophysical, and biochemical methods and found these domains to be intrinsically unstructured. We show that the photolyase-homology region interacts with the C-terminal domain, inducing stable tertiary structure in the C-terminal domain. Importantly, we demonstrate a light-dependent conformational change in the C-terminal domain of Arabidopsis Cry1. Collectively, these findings provide the first biochemical evidence for the proposed conformational rearrangement of cryptochromes upon light exposure. 相似文献