首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It has been hypothesized that horizontal gene/chromosome transfer and parasexual recombination following hyphal fusion between different strains may contribute to the emergence of wide genetic variability in plant pathogenic and other fungi. However, the significance of vegetative (heterokaryon) incompatibility responses, which commonly result in cell death, in preventing these processes is not known. In this study, we have assessed this issue following different types of hyphal fusion during colony initiation and in the mature colony. We used vegetatively compatible and incompatible strains of the common bean pathogen Colletotrichum lindemuthianum in which nuclei were labelled with either a green or red fluorescent protein in order to microscopically monitor the fates of nuclei and heterokaryotic cells following hyphal fusion. As opposed to fusion of hyphae in mature colonies that resulted in cell death within 3 h, fusions by conidial anastomosis tubes (CAT) between two incompatible strains during colony initiation did not induce the vegetative incompatibility response. Instead, fused conidia and germlings survived and formed heterokaryotic colonies that in turn produced uninucleate conidia that germinated to form colonies with phenotypic features different to those of either parental strain. Our results demonstrate that the vegetative incompatibility response is suppressed during colony initiation in C. lindemuthianum. Thus, CAT fusion may allow asexual fungi to increase their genetic diversity, and to acquire new pathogenic traits.  相似文献   

2.
Summary Conditions for high frequency electrofusion of protoplasts from the basidiomycete Schizophyllum commune are described. Visual inspection revealed up to 30% of the protoplasts engaged in fusion. Using complementing nutritional mutations, nearly 7% of the regenerated protoplasts could be recovered as heterokaryotic mycelia. The method is probably equally applicable to other basidiomycetes such as Agaricus bisporus, permitting the recovery of fusion products in the absence of selection markers.  相似文献   

3.
Marsupial x eutherian cell hybrids would be very useful for studies of mammalian genetics and cell biology. A critical step in the formation of such hybrids is the fusion of cells to form heterokaryons. We have examined many different combinations of marsupial and eutherian cells for their ability to fuse, and we have found that all combinations yielded heterokaryons, but with different frequencies, depending on the cell types used. Ranked in order of decreasing ability to fuse with eutherian cells, the marsupial cell types were; established lines, primary diploid fibroblasts and lymphocytes. In all fusion experiments there was a marked preference for the formation of homokaryons compared with heterokaryons. It was possible to control the numbers and types of heterokaryons formed by varying the input ratio of parental cells.  相似文献   

4.
A collection of isolates of Rhizoctonia solani anastomosis group (AG) 2 was examined for genetic diversity and pathogenicity. Anastomosis reactions classified the majority of isolates into the known subgroups of AG 2-1 and AG 2-2 but the classification of several isolates was ambiguous. Morphological characters were consistent with the species, with no discriminating characters existing between subgroups. Vertical PAGE of pectic enzymes enabled the separation of zymogram group (ZG) 5 and 6 within AG 2-1, but not the separation of ZG 4 and 10 within AG 2-2. PCR analysis using inter-simple sequence repeats (ISSR) and the intron-splice junction (ISJ) region supported the separation of ZG 5 and 6, while the AG 2-2 isolates were separated by geographic region. A comparison of distance matrices produced by the zymogram analysis and PCR indicated a strong correlation between the marker types. Pathogenicity studies suggested canola (Brassica napus) cultivars were most severely affected by AG 2-1, while cultivars of two species of medic (Medicago truncatula cv. Caliph and M. littoralis cv. Herald) were susceptible to both AG 2-1 and 2-2. The results indicate that AG 2 is a polyphyletic group in which the classification of subtypes is sometimes difficult. Further investigation of the population structure within Australia is required to determine the extent and origin of the observed diversity.  相似文献   

5.
In the Province of Aydin‐Turkey most frequently Fusarium spp. and secondly Rhizoctonia solani Kühn were isolated from the roots and crown of tomato plants. Based on affinities for hyphal fusion with test isolates, all R. solani isolates were identified as AG‐4. The tomato cultivars which were grown in soil infested with R. solani AG‐4 exhibited different reactions. From the point of symptom expression and the rate of seedling emergence Sunny 6066 F1 was found to be the most resistant cultivar, whereas Rio Grande, Rio Fuego, NDM 725, Interpeel and Konia were the most susceptible cultivars.  相似文献   

6.
7.
Cytosolic group IV phospholipase A2 (cPLA2) is a ubiquitously expressed enzyme with key roles in intracellular signaling. The current paradigm for activation of cPLA2 by stimuli proposes that both an increase in intracellular calcium and mitogen-activated protein kinase-mediated phosphorylation occur together to fully activate the enzyme. Calcium is currently thought to be needed for translocation of the cPLA2 to the membrane via a C2 domain, whereas the role of cPLA2 phosphorylation is less clearly defined. Herein, we report that brief exposure of P388D1 macrophages to UV radiation results in a rapid, cPLA2-mediated arachidonic acid mobilization, without increases in intracellular calcium. Thus, increased Ca2+ availability is a dispensable signal for cPLA2 activation, which suggests the existence of alternative mechanisms for the enzyme to efficiently interact with membranes. Our previous in vitro data suggested the importance of phosphatidylinositol 4,5-bisphosphate (PtdInsP2) in the association of cPLA2 to model membranes and hence in the regulation of cPLA2 activity. Experiments described herein show that PtdInsP2 also serves a similar role in vivo. Moreover, inhibition of PtdInsP2 formation during activation conditions leads to inhibition of the cPLA2-mediated arachidonic acid mobilization. These results suggest that cellular PtdInsP2 levels are involved in the regulation of group IV cPLA2 activation.  相似文献   

8.
9.
Many common diseases involve the injury, loss, or death of organ tissues. For these patients, organ transplantation is often the only viable solution. Nonetheless, organ transplantation is seriously limited by the relative scarcity of living and non-living donors, a situation that is worsening with aging of the world population. Tissue Engineering (TE) is a research discipline in regenerative medicine that aims to generate tissues in the laboratory that can replace diseased and damaged tissues in patients. Crucially, engineered tissues must have a vascular network that guarantees adequate nutrient supply, gas exchange, and elimination of waste products. Therefore, the search for clinically relevant sources of vasculogenic cells and the subsequent development of methods to achieve rapid vascularization is of utmost importance. We and others have previously shown that human blood-derived endothelial colony-forming cells (ECFCs) have the required vasculogenic capacity to form functional vascular networks in vivo. These studies demonstrated that, in the presence of an appropriate source of perivascular cells, ECFCs can self-assemble into microvascular networks and connect to the host vasculature, a process that takes approximately 7days in vivo. The prospect is to incorporate these vascular networks into future engineered tissues. However, engineered tissues must have a functional vasculature immediately after implantation in order to preserve viability and function. Thus, it is critical to further develop strategies for rapid formation of perfused vascular network in vivo. Here, we describe a methodology to deliver ECFCs and bone marrow-derived mesenchymal stem cells (MSCs) subcutaneously into immunodeficient mice in the presence of fibroblast growth factor-2 (FGF-2). This approach significantly reduces the time needed to achieve functional anastomoses between bioengineered human blood vessels and the host vasculature. This methodology includes (1) isolation, characterization and culture of ECFCs, (2) isolation, characterization and culture of MSCs, and (3) implantation of ECFCs and MSCs, in the presence of FGF-2, into immunodeficient mice to generate perfused vascular networks.  相似文献   

10.
2-(2-Pyridyl)ethyl group is a new type P-O protecting group for the synthesis of oligodeoxyribonucleotides by the phosphite triester method. This group is stable to alkali and acid conditions, and to be removed from internucleotidic bonds under mild conditions via two step procedures without any side reactions. Further we have found that bis(diisopropylamino)chlorophosphine is much more effective for the preparation of bis(diisopropylamino)alkoxyphosphines than various dichlorophosphines.  相似文献   

11.
12.
Group IV cytosolic phospholipase A(2) (cPLA(2)) has been shown to play a critical role in eicosanoid biosynthesis. cPLA(2) is composed of the C2 domain that mediates the Ca(2+)-dependent interfacial binding of protein and the catalytic domain. To elucidate the mechanism of interfacial activation of cPLA(2), we measured the effects of mutations of selected ionic and hydrophobic residues in the catalytic domain on the enzyme activity and the membrane binding of cPLA(2). Mutations of anionic residues located on (Glu(419) and Glu(420)) or near (Asp(436), Asp(438), Asp(439), and Asp(440)) the active site lid enhanced the affinity for cPLA(2) for anionic membranes, implying that the electrostatic repulsion between these residues and the anionic membrane surface might trigger the opening of the active site. This notion is further supported by a biphasic dependence of cPLA(2) activity on the anionic lipid composition of the vesicles. Mutations of a cluster of cationic residues (Lys(541), Lys(543), Lys(544), and Arg(488)), while significantly enhancing the activity of enzyme, abrogated the specific activation effect by phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2)). These data, in conjunction with cell activity of cPLA(2) and mutants transfected into HEK293 cells, suggest that the cationic residues form a specific binding site for PtdIns(4,5)P(2) and that the specific PtdIns(4,5)P(2) binding is involved in cellular activation of cPLA(2). Also, three hydrophobic residues at the rim of the active site (Ile(399), Leu(400), and Leu(552)) were shown to partially penetrate the membrane, thereby promoting membrane binding and activation of cPLA(2). Based on these results, we propose an interfacial activation mechanism for cPLA(2) which involves the removal of the active site lid by nonspecific electrostatic repulsion, the interdomain hinge movement induced by specific PtdIns(4,5)P(2) binding, and the partial membrane penetration by catalytic domain hydrophobic residues.  相似文献   

13.
Mylyk OM 《Genetics》1976,83(2):275-284
Five Neurospora crassa isolates from each of three sites in Louisiana were compared for genotype at five heterokaryon incompatibility (het) loci. The comparisons were made using duplications (partial diploids), based on the fact that duplications heterozygous for het loci have strikingly abnormal phenotypes which greatly facilitate the study of such genes. Duplications were synthesized in crosses between the wild strains (normal chromosome sequence) and testers of defined het genotype and having duplication-producing chromosome rearrangements. Crosses segregating for phenotypes characteristic of duplications heterozygous for het loci indicated allelic differences between testers and wild strains for specific het genes. Whenever a wild strain differed from a tester for a specific het locus, but another wild strain did not, the two wild strains could be inferred to differ from each other.—No two isolates from any site were heterokaryon compatible (of identical het genotype), despite the fact that all isolates from each of two sites occurred within several meters of each other. Heteromorphism was found for all five genes studied at one site, four genes at another site, and three at another. Intra- and interpopulation differences between strains were approximately the same.—Confirmation is also provided that two het genes originally detected in duplications are in fact heterokaryon incompatibility loci.  相似文献   

14.
Group V secretory phospholipase A2 (sPLA2) rather than Group IIA sPLA2 is involved in short term, immediate arachidonic acid mobilization and prostaglandin E2 (PGE2) production in the macrophage-like cell line P388D1. When a new clone of these cells, P388D1/MAB, selected on the basis of high responsivity to lipopolysaccharide plus platelet-activating factor, was studied, delayed PGE2 production (6-24 h) in response to lipopolysaccharide alone occurred in parallel with the induction of Group V sPLA2 and cyclooxygenase-2 (COX-2). No changes in the level of cytosolic phospholipase A2 (cPLA2) or COX-1 were observed, and Group IIA sPLA2 was not detectable. Use of a potent and selective sPLA2 inhibitor, 3-(3-acetamide 1-benzyl-2-ethylindolyl-5-oxy)propanesulfonic acid (LY311727), and an antisense oligonucleotide specific for Group V sPLA2 revealed that delayed PGE2 was largely dependent on the induction of Group V sPLA2. Also, COX-2, not COX-1, was found to mediate delayed PGE2 production because the response was completely blocked by the specific COX-2 inhibitor NS-398. Delayed PGE2 production and Group V sPLA2 expression were also found to be blunted by the inhibitor methylarachidonyl fluorophosphonate. Because inhibition of Ca2+-independent PLA2 by an antisense technique did not have any effect on the arachidonic acid release, the data using methylarachidonyl fluorophosphonate suggest a key role for the cPLA2 in the response as well. Collectively, the results suggest a model whereby cPLA2 activation regulates Group V sPLA2 expression, which in turn is responsible for delayed PGE2 production via COX-2.  相似文献   

15.
16.
17.
Kiuchi Y  Isobe Y  Fukushima K 《Life sciences》2002,70(13):1555-1564
The potential of targeting through molecular therapeutics the underlying amyloid beta-protein (A beta) fibrillogenesis causing the initiation and progression of Alzheimer's disease (AD) offers an opportunity to improve the disease. Type IV collagen (collagen IV) is localized in senile plaques in patients with AD. By using thioflavin T fluorescence spectroscopy and electron microscopy, we found that collagen IV inhibited A beta1-40 (A beta40) fibril formation. The critical concentration of collagen IV for this inhibition was 5 microg/mL. Circular dichroism data indicate that collagen IV prevents formation of a beta-structured aggregate of A beta40. These studies demonstrated that collagen IV is apparently a potent inhibitor of A beta fibril formation.  相似文献   

18.
19.
Human amylin (hA), which is toxic to islet β-cells, can self-generate H2O2, and this process is greatly enhanced in the presence of Cu(II) ions. Here we show that carbonyl groups, a marker of oxidative modification, were formed in hA incubated in the presence of Cu(II) ions or Cu(II) ions plus H2O2, but not in the presence of H2O2 alone. Furthermore, under similar conditions (i.e., in the presence of both Cu(II) ions and H2O2), hA also stimulated ascorbate radical formation. The same observations concerning carbonyl group formation were made when the histidine residue (at position 18) in hA was replaced by alanine, indicating that this residue does not play a key role. In complete contrast to hA, rodent amylin, which is nontoxic, does not generate H2O2, and binds Cu(II) ions only weakly, showed none of these properties. We conclude that the hA-Cu(II)/Cu(I) complex is redox active, with electron donation from the peptide reducing the oxidation state of the copper ions. The complex is capable of forming H2O2 from O2 and can also generate OH via Fenton chemistry. These redox properties of hA can explain its ability to stimulate copper-mediated carbonyl group and ascorbate radical formation. The formation of reactive oxygen species from hA in this way could hold the key to a better understanding of the damaging consequences of amyloid formation within the pancreatic islets of patients with type 2 diabetes mellitus.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号