首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Axis patterning and appendage development have been well studied in Drosophila melanogaster, a species in which both limb and segment morphogenesis are derived. In Drosophila, positional information from genes important in anteroposterior and dorsoventral axis formation, including wingless (wg) and decapentaplegic (dpp), is required for allocating and patterning the appendage primordia. We used RNA interference to characterize the functions of wg and dpp in the red flour beetle, Tribolium castaneum, which retains more ancestral modes of limb and segment morphogenesis. We also characterized the expression of potential targets of the WG and DPP signaling pathways in these embryos. Tribolium embryos in which dpp had been downregulated had defects in the dorsalmost body wall, but did not appear to have been globally repatterned and had normal appendages. Downregulation of wg led to the loss of segment boundaries, gnathal and thoracic appendages, and lateral head lobes, and to changes in the expression of dpp, Distal-less, and Engrailed. The functions of wg varied along both the anteroposterior and dorsoventral axes of the embryo. Phylogenetic comparisons indicate that the role of WNT signaling in segment boundary formation is evolutionarily old, but that its role in appendage allocation originated in the common ancestor of holometabolous insects.  相似文献   

2.
optix, the Drosophila ortholog of the SIX3/6 gene family in vertebrate, encodes a homeodomain protein with a SIX protein–protein interaction domain. In vertebrates, Six3/6 genes are required for normal eye as well as brain development. However, the normal function of optix in Drosophila remains unknown due to lack of loss-of-function mutation. Previous studies suggest that optix is likely to play an important role as part of the retinal determination (RD) network. To elucidate normal optix function during retinal development, multiple null alleles for optix have been generated. Loss-of-function mutations in optix result in lethality at the pupae stage. Surprisingly, close examination of its function during eye development reveals that, unlike other members of the RD network, optix is required only for morphogenetic furrow (MF) progression, but not initiation. The mechanisms by which optix regulates MF progression is likely through regulation of signaling molecules in the furrow. Specifically, although unaffected during MF initiation, expression of dpp in the MF is dramatically reduced in optix mutant clones. In parallel, we find that optix is regulated by sine oculis and eyes absent, key members of the RD network. Furthermore, positive feedback between optix and sine oculis and eyes absent is observed, which is likely mediated through dpp signaling pathway. Together with the observation that optix expression does not depend on hh or dpp, we propose that optix functions together with hh to regulate dpp in the MF, serving as a link between the RD network and the patterning pathways controlling normal retinal development.  相似文献   

3.
A previous genetic analysis of a reporter gene carrying a 375-bp region from a dpp intron (dppMX-lacZ) revealed that the Wingless and Dpp pathways are required to activate dpp expression in posterior spiracle formation. Here we report that within the dppMX region there is an enhancer with binding sites for TCF and Mad that are essential for activating dppMX expression in posterior spiracles. There is also a binding site for Brinker likely employed to repress dppMX expression. This combinatorial enhancer may be the first identified with the ability to integrate temporally distinct positive (TCF and Mad) and negative (Brinker) inputs in the same cells. Cuticle studies on a unique dpp mutant lacking this enhancer showed that it is required for viability and that the Filzkorper are U-shaped rather than straight. Together with gene expression data from these mutants and from brk mutants, our results suggest that there are two rounds of Dpp signaling in posterior spiracle development. The first round is associated with dorsal-ventral patterning and is necessary for designating the posterior spiracle field. The second is governed by the combinatorial enhancer and begins during germ band retraction. The second round appears necessary for proper spiracle internal morphology and fusion with the remainder of the tracheal system. Intriguingly, several aspects of dpp posterior spiracle expression and function are similar to demonstrated roles for Wnt and BMP signaling in proximal-distal outgrowth of the mammalian embryonic lung.  相似文献   

4.
5.
6.
7.
 Genetically mosaic flies were constructed which lack a functional decapentaplegic (dpp) or wingless (wg) gene in portions of their leg epidermis, and the leg cuticle was examined for defects. Although dpp has previously been shown to be transcribed both ventrally and dorsally, virtually the only dpp-null clones that affect leg anatomy are those which reside dorsally. Conversely, wg-null clones only cause leg defects when they reside ventrally – a result that was expected, given that wg is only expressed ventrally. Both findings are consistent with models of leg development in which the future tip of the leg is specified by an interaction between dpp and wg at the center of the leg disc. Null clones can cause mirror-image cuticular duplications confined to individual leg segments. Double-ventral, mirror-image patterns are observed with dpp-null clones, and double-dorsal patterns with wg-null clones. Clones that are doubly mutant (null for both dpp and wg) manifest reduced frequencies for both types of duplications. Duplications can include cells from surrounding non-mutant territory. Such nonautonomy implies that both dpp and wg are involved in positional signaling, not merely in the maintenance of cellular identities. However, neither gene product appears to function as a morphogen for the entire leg disc, since the effects of each gene’s null clones are restricted to a discrete part of the circumference. Interestingly, the circumferential domains where dpp and wg are needed are complementary to one another. Received: 25 March 1996 / Accepted: 13 June 1996  相似文献   

8.
9.
10.
11.
12.
Imaginal discs of Drosophila have the remarkable ability to regenerate. After fragmentation wound healing occurs, ectopic wg is induced and a blastema is formed. In some, but not all fragments, the blastema will replace missing structures and a few cells can become more plastic and transdetermine to structures of other discs. A series of systematic cuts through the first leg disc revealed that a cut must transect the dorsal-proximal disc area and that the fragment must also include wg-competent cells. Fragments that fail to both transdetermine and regenerate missing structures will do both when provided with exogenous Wg, demonstrating the necessity of Wg in regenerative processes. In intact leg discs ubiquitously expressed low levels of Wg also leads to blastema formation, regeneration and transdetermination. Two days after exogenous wg induction the endogenous gene is activated, leading to elevated levels of Wg in the dorsal aspect of the leg disc. We identified a wg enhancer that regulates ectopic wg expression. Deletion of this enhancer increases transdetermination, but lowers the amount of ectopic Wg. We speculate that this lessens repression of dpp dorsally, and thus creates a permissive condition under which the balance of ectopic Wg and Dpp is favorable for transdetermination.  相似文献   

13.
The remarkable diversity of form in arthropods reflects flexible genetic programs deploying many conserved genes. In the insect model Drosophila melanogaster, diversity of form can be observed between serially homologous appendages or when a single appendage is transformed by homeotic mutations, such as the adult labial mouthparts that can present alternative antennal, prothoracic, or maxillary identities. We have examined the roles of the Hox selector genes proboscipedia (pb) and Sex combs reduced (Scr), and the antennal selectors homothorax (hth) and spineless (ss) in labial specification, by tissue-directed mitotic recombination. Whereas loss of pb function transforms labium to prothoracic leg, loss of Scr, hth, or ss functions results in little or no change in labial specification. Results of analysis of single and multiple mutant combinations support a genetic hierarchy in which the homeotic pb gene possesses a primary role. It is surprising to note that while loss of ss activity alone had no detected effect, all mutant combinations lacking both pb and ss yielded the most severe phenotype observed: stunted, apparently tripartite legs that may correspond to a default state. The roles of the four selector genes are functionally linked to a cell nonautonomous mechanism involving the coupled activities of the decapentaplegic (dpp)/TGF-β and wingless (wg)/Wnt signaling pathways. Accordingly, several mutant combinations impaired in dpp signaling were seen to reorient labial-to-leg transformations toward antennal aristae. A crucial aspect of selector function in development and evolution may be in regulating diffusible signals, including those emitted by dpp and wg.  相似文献   

14.
Studies focusing on the development of morphological novelties suggest that patterning genes underlying traditional appendage development (i.e. mouthparts, legs, and wings) also play important roles in patterning novel morphological structures. In this study, we examine whether the expression and function of a member of the TGF-β signaling pathway, decapentaplegic (dpp), promotes development of a morphologically novel structure: beetle horns. Beetle horns are complex secondary sexual structures that develop in the head and/or prothorax, lack obvious homology to other insect outgrowths, and vary remarkably between species and sexes. We studied dpp expression through in situ hybridization, performed functional analyses with RNA interference, and gathered allometric measurements to determine the role of dpp during both pronotal and head horn development in both sexes of two morphologically dissimilar species in the Onthophagus genus, Onthophagus binodis and Onthophagus sagittarius. Our findings show that in addition to affecting growth and patterning of traditional appendages, dpp regulates beetle horn growth and remodeling.  相似文献   

15.
16.
 The genes engrailed (en), hedgehog (hh), wingless (wg) and decapentaplegic (dpp) have been shown to play vital organising roles in the development and differentiation of thoracic imaginal discs. We have analysed the roles of these genes in organising the development and differentiation of the genital discs, which are bilaterally symmetrical and possess different primordia, namely, the male and female genital primordia and an anal primordium. Our results suggest that the organising activity of en in genital discs programs the normal development and differentiation of the genital disc by regulating the expression of hh. Hh in turn induces wg and dpp, the genes whose products act as secondary signalling molecules. Moreover, the complementary patterns of wg and dpp expression are essential for the bilateral symmetry and are maintained by mutual repression. Received: 20 April 1998 / Accepted 24 June 1998  相似文献   

17.
The nature and origin of the arthropod labrum is a matter much under dispute. We show here that in Tribolium castaneum (Herbst, 1797) the labrum develops from two individual primordia, termed labral buds. Expression of the genes decapentaplegic (dpp) and wingless (wg) in these buds is identical to the buds of the metameric appendages (e.g. thoracic legs), except that the patterns are reversed. We propose that this reversal is the result of the rotation of the labral buds through an angle of approximately 180°. We also for the first time study dpp and wg expression in the fully developed labrum of older embryonic stages. Here, gene expression patterns show that the labrum proper is formed by fusion of the labral buds along their dorsal sides, while their ventral sides are facing outward forming the lateral sides of the fused labrum. Furthermore, we show that there are very similar patterns in another arthropod species, the spider Cupiennius salei (Keyserling, 1877), although in this species the labrum develops as a single structure and not from two separate primordia. However, in C. salei the expression of engrailed is also reversed in addition to the reversal of dpp and wg expression: engrailed is expressed in the anterior half of the labrum, and not in the posterior half like in the remaining appendages. Our results suggest that the arthropod labrum is derived evolutionarily from paired limb-bud-like primordia by rotation and fusion, and that this process is recapitulated ontogenetically to a different extent in different arthropod species.  相似文献   

18.
19.
Mutations in the expanded gene act as hyperplastic tumor suppressors, interfere with cell competition and elevate Dpp signaling. Unlike Dpp overexpression, ex causes few patterning defects. Our data suggest that patterning effects are partly masked by antagonistic roles of other signaling pathways that are also activated. ex causes proliferation of cells in the posterior eye disc that are normally postmitotic. ex mutations elevate Wg signaling, but Dpp signaling antagonizes patterning effects of Wg. By contrast, if Dpp signaling is blocked in ex mutant cells, the elevated Wg signaling preserves an immature developmental state and prevents retinal differentiation. An effect of ex mutations on vesicle transport is suggested by evidence for altered sterol distribution. Mutations in ft show effects on proliferation, Wg signaling and sterols very similar to those of ex mutations. During disc growth, ex was largely epistatic to ft, and the Warts pathway mutation hippo largely epistatic to ex. Our data suggest that ft and ex act partially through the Warts pathway.  相似文献   

20.
The normal cellular organization and layering of the vertebrate cerebellum is established during embryonic and early postnatal development by the interplay of a complex array of genetic and signaling pathways. Disruption of these processes and of the proper layering of the cerebellum usually leads to ataxic behaviors. Here, we analyzed the relative contribution of Fibroblast growth factor receptor 2 (FGFR2)-mediated signaling to cerebellar development in conditional Fgfr2 single mutant mice. We show that during embryonic mouse development, Fgfr2 expression is higher in the anterior cerebellar primordium and excluded from the proliferative ventricular neuroepithelium. Consistent with this finding, conditional Fgfr2 single mutant mice display the most prominent defects in the anterior lobules of the adult cerebellum. In this context, FGFR2-mediated signaling is required for the proper generation of Bergmann glia cells and the correct positioning of these cells within the Purkinje cell layer, and for cell survival in the developing cerebellar primordium. Using cerebellar microexplant cultures treated with an FGFR agonist (FGF9) or antagonist (SU5402), we also show that FGF9/FGFR-mediated signaling inhibits the outward migration of radial glia and Bergmann glia precursors and cells, and might thus act as a positioning cue for these cells. Altogether, our findings reveal the specific functions of the FGFR2-mediated signaling pathway in the generation and positioning of Bergmann glia cells during cerebellar development in the mouse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号