首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nie X  Deng CX  Wang Q  Jiao K 《Developmental biology》2008,316(2):417-430
TGFβ/BMP signaling pathways are essential for normal development of neural crest cells (NCCs). Smad4 encodes the only common Smad protein in mammals, which is a critical nuclear mediator of TGFβ/BMP signaling. In this work, we sought to investigate the roles of Smad4 for development of NCCs. To overcome the early embryonic lethality of Smad4 null mice, we specifically disrupted Smad4 in NCCs using a Cre/loxP system. The mutant mice died at mid-gestation with defects in facial primordia, pharyngeal arches, outflow tract and cardiac ventricles. Further examination revealed that mutant embryos displayed severe molecular defects starting from E9.5. Expression of multiple genes, including Msx1, 2, Ap-2α, Pax3, and Sox9, which play critical roles for NCC development, was downregulated by NCC disruption of Smad4. Moreover, increased cell death was observed in pharyngeal arches from E10.5. However, the cell proliferation rate in these areas was not substantially altered. Taken together, these findings provide compelling genetic evidence that Smad4-mediated activities of TGFβ/BMP signals are essential for appropriate NCC development.  相似文献   

2.
Members of the bone morphogenetic protein (BMP) superfamily, including transforming growth factor-betas (TGFβ), regulate multiple aspects of chondrogenesis. Smad7 is an intracellular inhibitor of BMP and TGFβ signaling. Studies in which Smad7 was overexpressed in chondrocytes demonstrated that Smad7 can impact chondrogenesis by inhibiting BMP signaling. However, whether Smad7 is actually required for endochondral ossification in vivo is unclear. Moreover, whether Smad7 regulates TGFβ in addition to BMP signaling in developing cartilage is unknown. In this study, we found that Smad7 is required for both axial and appendicular skeletal development. Loss of Smad7 led to impairment of the cell cycle in chondrocytes and to defects in terminal maturation. This phenotype was attributed to upregulation of both BMP and TGFβ signaling in Smad7 mutant growth plates. Moreover, Smad7−/− mice develop hypocellular cores in the medial growth plates, associated with elevated HIF1α levels, cell death, and intracellular retention of types II and X collagen. Thus, Smad7 may be required to mediate cell stress responses in the growth plate during development.  相似文献   

3.
The small GTP-binding protein Rac1, a member of the Rho family of small GTPases, has been implicated in regulation of many cellular processes including adhesion, migration and cytokinesis. These functions have largely been attributed to its ability to reorganize cytoskeleton. While the function of Rac1 is relatively well known in vitro, its role in vivo has been poorly understood. It has previously been shown that in neural crest cells (NCCs) Rac1 is required in a stage-specific manner to acquire responsiveness to mitogenic EGF signals. Here we demonstrate that mouse embryos lacking Rac1 in neural crest cells (Rac1/Wnt1-Cre) showed abnormal craniofacial development including regional ectodermal detachment associated with mesenchymal acellularity culminating in cleft face at E12. Rac1/Wnt1-Cre mutants also displayed inappropriate remodelling of pharyngeal arch arteries and defective outflow tract septation resulting in the formation of a common arterial trunk (‘persistent truncus arteriosus’ or PTA). The mesenchyme around the aortic sac also developed acellular regions, and the distal aortic sac became grossly dysmorphic, forming a pair of bilateral, highly dilated arterial structures connecting to the dorsal aortas. Smooth muscle cells lacking Rac1 failed to differentiate appropriately, and subpopulations of post-migratory NCCs demonstrated aberrant cell death and attenuated proliferation. These novel data demonstrate that while Rac1 is not required for normal NCC migration in vivo, it plays a critical cell-autonomous role in post-migratory NCCs during craniofacial and cardiac development by regulating the integrity of the craniofacial and pharyngeal mesenchyme.  相似文献   

4.
Members of the TGFβ superfamily are known to exert a myriad of physiologic and pathologic growth controlling influences on mammary development and oncogenesis. In epithelial cells, TGFβ signaling inhibits cell growth through cytostatic and pro-apoptotic activities but can also induce cancer cell EMT and, thus, has a dichotomous role in breast cancer biology. Mechanisms governing this switch are the subject of active investigation. Smad3 is a critical intracellular mediator of TGFβ signaling regulated through phosphorylation by the TGFβ receptor complex at the C terminus. Smad3 is also a substrate for several other kinases that phosphorylate additional sites within the Smad protein. This discovery has expanded the understanding of the significance and complexity of TGFβ signaling through Smads. This review highlights recent advances revealing the critical role of phospho-specific Smad3 in malignancy and illustrates the potential prognostic and therapeutic impact of Smad3 phospho-isoforms in breast cancer.  相似文献   

5.
6.
7.
Neural crest cells (NCC) give rise to much of the tissue that forms the vertebrate head and face, including cartilage and bone, cranial ganglia and teeth. In this study we show that conditional expression of a dominant-negative (DN) form of Rho kinase (Rock) in mouse NCC results in severe hypoplasia of the frontonasal processes and first pharyngeal arch, ultimately resulting in reduction of the maxilla and nasal bones and severe craniofacial clefting affecting the nose, palate and lip. These defects resemble frontonasal dysplasia in humans. Disruption of the actin cytoskeleton, which leads to abnormalities in cell-matrix attachment, is seen in the RockDN;Wnt1-cre mutant embryos. This leads to elevated cell death, resulting in NCC deficiency and hypoplastic NCC-derived craniofacial structures. Rock is thus essential for survival of NCC that form the craniofacial region. We propose that reduced NCC numbers in the frontonasal processes and first pharyngeal arch, resulting from exacerbated cell death, may be the common mechanism underlying frontonasal dysplasia.  相似文献   

8.
9.
Congenital diseases caused by abnormal development of the cranial neural crest usually present craniofacial malformations and heart defects while the precise mechanism is not fully understood. Here, we show that the zebrafish eif3ba mutant caused by pseudo-typed retrovirus insertion exhibited a similar phenotype due to the hypogenesis of cranial neural crest cells (NCCs). The derivatives of cranial NCCs, including the NCC-derived cell population of pharyngeal arches, craniofacial cartilage, pigment cells and the myocardium derived from cardiac NCCs, were affected in this mutant. The expression of several neural crest marker genes, including crestin, dlx2a and nrp2b, was specifically reduced in the cranial regions of the eif3ba mutant. Through fluorescence-tracing of the cranial NCC migration marker nrp2b, we observed reduced intensity of NCC-derived cells in the heart. In addition, p53 was markedly up-regulated in the eif3ba mutant embryos, which correlated with pronounced apoptosis in the cranial area as shown by TUNEL staining. These findings suggest a novel function of eif3ba during embryonic development and a novel level of regulation in the process of cranial NCC development, in addition to providing a potential animal model to mimic congenital diseases due to cranial NCC defects. Furthermore, we report the identification of a novel transgenic fish line Et(gata2a:EGFP)pku418 to trace the migration of cranial NCCs (including cardiac NCCs); this may serve as an invaluable tool for investigating the development and dynamics of cranial NCCs during zebrafish embryogenesis.  相似文献   

10.
A key role for phosphorylation of Smad2 by TGFβ superfamily ligands in the axial patterning of early embryos is well established. The regulation and role of Smad2 signaling in post-neurula embryonic patterning, however, is less well understood. While a variety of TGFβ superfamily ligands are implicated in various stages of anterior–posterior patterning, the ligand GDF11 has been shown to have a particular role in post-gastrula patterning in the mouse. Mouse GDF11 is specifically localized to the developing tail and is essential for normal posterior axial patterning. Mature GDF11 ligand is inhibited by its own prodomain, and extracellular proteolysis of this prodomain is thought to be necessary for GDF11 activity. The contribution of this proteolytic regulatory mechanism to Smad activation during embryogenesis in vivo, and to the development of posterior pattern, has not been characterized. We investigate here the role of Xenopus GDF11 in the activation of Smad2 during the development of tailbud-stage embryos, and the role of this activation in larval development. We also demonstrate that the activity of BMP-1/Tolloid-like proteases is necessary for the normal GDF11-dependent activation of Smad2 phosphorylation during post-gastrula development. These data demonstrate that GDF11 has a central role in the activation of Smad2 phosphorylation in tailbud stage Xenopus embryos, and provide the first evidence that BMP-1/Tolloid-mediated prodomain cleavage is important for activation of GDF11 in vivo.  相似文献   

11.
12.
13.
《Journal of Asia》2021,24(4):1087-1094
Transforming growth factor-beta (TGF-β) signaling pathway plays important roles in embryonic development, cell proliferation and tissue differentiation in vertebrates. Our previous studies demonstrated that TGF-β signal activates Smad1-POU-TFAM and PP2A-Akt pathways to regulate pupal diapause in Helicoverpa armigera. In this study, we investigated the function of TGF-β activates Smad2 pathway in H. armigera. Phylogenetic analysis of H. armigera TGF-β receptor I (TGFβRI), Smad2, Smad4 genes showed high conservation across species. In vitro experiments showed that TGFβRI was localized in the cell membrane where it binds Smad2 leading to the phosphorylation of Smad2. Smad4 was mainly localized in the cytoplasm, and bind to Smad2. Protein expression analysis showed that expression of TGFβRI, Smad4, Smad2, p-Smad2 were lower in diapause-destined pupae compared with nondiapause-destined pupae. Notably, treatment with 20-hydroxyecdysone (20E) increased expression of the above proteins. Inhibition of TGF-β/Smad2 signaling pathway delayed pupal development. These findings indicate that TGF-β/Smad2 pathway is involved in pupal development or diapause in H. armigera.  相似文献   

14.
Pancreatic fibrosis is the hallmark of chronic pancreatitis, currently an incurable disease. Pancreatitis fibrosis is caused by deposition of extracellular matrix (ECM) and the underlying pathological mechanism remains unclear. In addition to its broad biological activities, TGF-β is a potent pro-fibrotic factor and many in vitro studies using cell systems have implicated a functional role of TGF-β in the pathogenesis of pancreatic fibrosis. We analyzed the in vivo role of TGF-β pathway in pancreatic fibrosis in this study. Smad7, an intracellular inhibitory protein that antagonizes TGF-β signaling, was specifically expressed in the pancreas using a transgenic mouse model. Chronic pancreatitis was induced in the mouse with repeated administration of cerulein. Smad7 expression in the pancreas was able to significantly inhibit cerulein-induced pancreatic fibrosis. Consistently, the protein levels of collagen I and fibronectin were decreased in the Smad7 transgenic mice. In addition, α-smooth muscle actin, a marker of activated pancreas stellate cells, was reduced in the transgenic mice. Taken together, these data indicate that inhibition of TGF-β signaling by Smad7 is able to protect cerulein-induced pancreatic fibrosis in vivo.  相似文献   

15.
16.
Neural crest cells (NCCs) migrate from different regions along the anterior–posterior axis of the neural tube (NT) to form different structures. Defective NCC development causes congenital neurocristopathies affecting multiple NCC-derived tissues in human. Perturbed Hoxb5 signaling in vagal NCC causes enteric nervous system (ENS) defects. This study aims to further investigate if perturbed Hoxb5 signaling in trunk NCC contributes to defects of other NCC-derived tissues besides the ENS. We perturbed Hoxb5 signaling in NCC from the entire NT, and investigated its impact in the development of tissues derived from these cells in mice. Perturbation of Hoxb5 signaling in these NCC resulted in Sox9 downregulation, NCC apoptosis, hypoplastic sympathetic and dorsal root ganglia, hypopigmentation and ENS defects. Mutant mice with NCC-specific Sox9 deletion also displayed some of these phenotypes. In vitro and in vivo assays indicated that the Sox9 promoter was bound and trans-activated by Hoxb5. In ovo studies further revealed that Sox9 alleviated apoptosis induced by perturbed Hoxb5 signaling, and Hoxb5 induced ectopic Sox9 expression in chick NT. This study demonstrates that Hoxb5 regulates Sox9 expression in NCC and disruption of this signaling causes Sox9 downregulation, NCC apoptosis and multiple NCC-developmental defects. Phenotypes such as ENS deficiency, hypopigmentation and some of the neurological defects are reported in patients with Hirschsprung disease (HSCR). Whether dysregulation of Hoxb5 signaling and early depletion of NCC contribute to ENS defect and other neurocristopathies in HSCR patients deserves further investigation.  相似文献   

17.
18.
The Hedgehog signaling pathway is critical for a significant number of developmental patterning events. In this study, we focus on the defects in pharyngeal arch and cardiovascular patterning present in Sonic hedgehog (Shh) null mouse embryos. Our data indicate that, in the absence of Shh, there is general failure of the pharyngeal arch development leading to cardiac and craniofacial defects. The cardiac phenotype results from arch artery and outflow tract patterning defects, as well as abnormal development of migratory neural crest cells (NCCs). The constellation of cardiovascular defects resembles a severe form of the human birth defect syndrome tetralogy of Fallot with complete pulmonary artery atresia. Previous studies have demonstrated a role for Shh in NCC survival and proliferation at later stages of development. Our data suggest that SHH signaling does not act directly on NCCs as a survival factor, but rather acts to restrict the domains that NCCs can populate during early stages (e8.5-10.5) of cardiovascular and craniofacial development.  相似文献   

19.
20.
转化生长因子(TGF)-β超家族成员的重要生物学功能正日益引起人们的重视。受体介导的胞内信号转导研究近年有较大进展,特别是Smads蛋白介导的信号转导通路为阐明TGF-β超家族的作用机理提供了一条重要线索。TGF-β/Smads信号的转导受到机体严密的调控,并与其他信号通路存在着广泛的交叉对话效应。综述了对TGF-β/Smads信号转导通路的机制、调控,及其在维持机体正常生理功能和疾病发生中的作用的研究进展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号