首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
LDL receptor-related protein 6 (LRP6) is a Wnt coreceptor in the canonical signaling pathway, which plays essential roles in embryonic development. We demonstrate here that wild-type LRP6 forms an inactive dimer through interactions mediated by epidermal growth factor repeat regions within the extracellular domain. A truncated LRP6 comprising its transmembrane and cytoplasmic domains is expressed as a constitutively active monomer whose signaling ability is inhibited by forced dimerization. Conversely, Wnts are shown to activate canonical signaling through LRP6 by inducing an intracellular conformational switch which relieves allosteric inhibition imposed on the intracellular domains. Thus, Wnt canonical signaling through LRP6 establishes a novel mechanism for receptor activation which is opposite to the general paradigm of ligand-induced receptor oligomerization.  相似文献   

2.
Pancreatic ductal adenocarcinoma (PDA) is an extremely aggressive malignancy, which carries a dismal prognosis. Activating mutations of the Kras gene are common to the vast majority of human PDA. In addition, recent studies have demonstrated that embryonic signaling pathway such as Hedgehog and Notch are inappropriately upregulated in this disease. The role of another embryonic signaling pathway, namely the canonical Wnt cascade, is still controversial. Here, we use gene array analysis as a platform to demonstrate general activation of the canonical arm of the Wnt pathway in human PDA. Furthermore, we provide evidence for Wnt activation in mouse models of pancreatic cancer. Our results also indicate that Wnt signaling might be activated downstream of Hedgehog signaling, which is an early event in PDA evolution. Wnt inhibition blocked proliferation and induced apoptosis of cultured adenocarcinoma cells, thereby providing evidence to support the development of novel therapeutical strategies for Wnt inhibition in pancreatic adenocarcinoma.  相似文献   

3.
Wnt signaling orchestrates multiple aspects of central nervous system development, including cell proliferation and cell fate choices. In this study, we used gene transfer to activate or inhibit canonical Wnt signaling in vivo in the developing eye. We found that the expression of Wnt2b or constitutively active (CA) beta-catenin inhibited retinal progenitor gene (RPG) expression and the differentiation of retinal neurons. In addition, Wnt signal activation in the central retina was sufficient to induce the expression of markers of the ciliary body and iris, two tissues derived from the peripheral optic cup (OC). The expression of a dominant-negative (DN) allele of Lef1, or of a Lef1-engrailed fusion protein, led to the inhibition of expression of peripheral genes and iris hypoplasia, suggesting that canonical Wnt signaling is required for peripheral eye development. We propose that canonical Wnt signaling in the developing optic vesicle (OV) and OC plays a crucial role in determining the identity of the ciliary body and iris. Because wingless (wg) plays a similar role in the induction of peripheral eye tissues of Drosophila, these findings indicate a possible conservation of the process that patterns the photoreceptive and support structures of the eye.  相似文献   

4.
5.
Wu X  Tu X  Joeng KS  Hilton MJ  Williams DA  Long F 《Cell》2008,133(2):340-353
Canonical Wnt signaling critically regulates cell fate and proliferation in development and disease. Nuclear localization of beta-catenin is indispensable for canonical Wnt signaling; however, the mechanisms governing beta-catenin nuclear localization are not well understood. Here we demonstrate that nuclear accumulation of beta-catenin in response to Wnt requires Rac1 activation. The role of Rac1 depends on phosphorylation of beta-catenin at Ser191 and Ser605, which is mediated by JNK2 kinase. Mutations of these residues significantly affect Wnt-induced beta-catenin nuclear accumulation. Genetic ablation of Rac1 in the mouse embryonic limb bud ectoderm disrupts canonical Wnt signaling and phenocopies deletion of beta-catenin in causing severe truncations of the limb. Finally, Rac1 interacts genetically with beta-catenin and Dkk1 in controlling limb outgrowth. Together these results uncover Rac1 activation and subsequent beta-catenin phosphorylation as a hitherto uncharacterized mechanism controlling canonical Wnt signaling and may provide additional targets for therapeutic intervention of this important pathway.  相似文献   

6.
The cranial suture complex is a heterogeneous tissue consisting of osteogenic progenitor cells and mesenchymal stem cells (MSCs) from bone marrow and suture mesenchyme. The fusion of cranial sutures is a highly coordinated and tightly regulated process during development. Craniosynostosis is a congenital malformation caused by premature fusion of cranial sutures. While the progenitor cells derived from the cranial suture complex should prove valuable for studying the molecular mechanisms underlying suture development and pathogenic premature suture fusion, primary human cranial suture progenitors (SuPs) have limited life span and gradually lose osteoblastic ability over passages. To overcome technical challenges in maintaining sufficient and long‐term culture of SuPs for suture biology studies, we establish and characterize the reversibly immortalized human cranial suture progenitors (iSuPs). Using a reversible immortalization system expressing SV40 T flanked with FRT sites, we demonstrate that primary human suture progenitor cells derived from the patent sutures of craniosynostosis patients can be efficiently immortalized. The iSuPs maintain long‐term proliferative activity, express most of the consensus MSC markers and can differentiate into osteogenic and adipogenic lineages upon BMP9 stimulation in vitro and in vivo. The removal of SV40 T antigen by FLP recombinase results in a decrease in cell proliferation and an increase in the endogenous osteogenic and adipogenic capability in the iSuPs. Therefore, the iSuPs should be a valuable resource to study suture development, intramembranous ossification and the pathogenesis of craniosynostosis, as well as to explore cranial bone tissue engineering.  相似文献   

7.
In CD-1 mice, the posterior frontal suture (analogous to the human metopic suture) fuses while all other cranial sutures remain patent. In an in vitro organ culture model, the authors previously demonstrated that posterior frontal sutures explanted immediately before the onset of suture fusion (at 25 days old) mimic in vivo physiologic fusion. In the first portion of this study, the authors defined how early in development the posterior frontal suture fuses in their tension-free, serum-free organ culture system by serially analyzing posterior frontal suture fusion from calvariae explanted at different stages of postnatal development. Their results revealed a divergence of suture fate leading to abnormal patency or physiologic fusion between the first and second weeks of life, respectively, despite viability and continued growth of the calvarial explants in vitro. From these data, the authors postulated that the gene expression patterns present in the suture complex at the time of explant may determine whether the posterior frontal suture fuses or remains patent in organ culture. Therefore, to elucidate potentially important differences in gene expression within this "window of opportunity," they performed a cDNA microarray analysis on 5-day-old and 15-day-old posterior frontal and sagittal whole suture complexes corresponding to the age ranges for unsuccessful (1 to 7 days old) and successful (14 to 21 days old) in vitro posterior frontal suture fusion. Overall, their microarray results reveal interesting differential expression patterns of candidate genes in different categories, including angiogenic cytokines and mechanosensitive genes potentially important in cranial suture biology.  相似文献   

8.
The effect of a noncanonical Wnt, Wnt11, on canonical Wnt signaling stimulated by Wnt1 and activated forms of LRP5 (low density lipoprotein receptor-related protein-5), Dishevelled1 (Dvl1), and beta-catenin was examined in NIH3T3 cells and P19 embryonic carcinoma cells. Wnt11 repressed Wnt1-mediated activation of LEF-1 reporter activity in both cell lines. However, Wnt11 was unable to inhibit canonical signaling activated by LRP5, Dvl1, or beta-catenin in NIH3T3 cells, although it could in P19 cells. In addition, Wnt11-mediated inhibition of canonical signaling in NIH3T3 cells is ligand-specific; Wnt11 could effectively repress canonical signaling activated by Wnt1, Wnt3, or Wnt3a but not by Wnt7a or Wnt7b. Co-culture experiments with NIH3T3 cells showed that the co-expression of Wnt11 with Wnt1 was not an essential requirement for the inhibition, suggesting receptor competition as a possible mechanism. Moreover, in both cell types, elevation of intracellular Ca(2+) levels, which can result from Wnt11 treatment, led to the inhibition of canonical signaling. This result suggests that Wnt11 might not be able to signal in NIH3T3. Furthermore, P19 cells were found to express both endogenous canonical Wnts and Wnt11. Knockdown of Wnt11 expression using siRNA resulted in increased LEF-1 reporter activity, thus indicating that Wnt11-mediated suppression of canonical signaling exists in vivo.  相似文献   

9.
10.
In most cases, advanced stages of melanoma are practically incurable due to high metastatic potential of tumor cells. Multiple observations support the idea that aberrations in Wnt signaling pathway play a significant role in melanoma development and progression. Canonical Wnt signaling activation results in stabilization and accumulation of the major effector molecule called beta-catenin. Mutations promoting beta-catenin stabilization and, thereby, activation of canonical Wnt signaling pathway are frequently found in different cancers, but rarely observed in melanomas. Nevertheless, beta-catenin nuclear and cytoplasmic accumulation is the feature of many human melanoma cell lines and original tumors. That is why, the aim of the investigation was to elucidate the relation between beta-catenin intracellular localization and activity status of Wnt signaling pathway in human melanoma cell lines. Ten human melanoma cell lines were characterized on the basis of the following parameters: canonical Wnt ligand expression, intracellular beta-catenin localization, and activity status of canonical Wnt signaling pathway. Here, it has been demonstrated that nuclear localization of beta-catenin does not always correspond to active status canonical Wnt signaling pathway. Moreover, in the majority of cell lines with nuclear beta-catenin canonical Wnt signaling can't be activated by exogenous expression of an appropriate ligand. Human melanoma cell lines differ in activity of canonical Wnt signaling pathway as well as in mechanisms of its regulation. Therefore, the pathway-targeted potential antineoplastic therapy requires the formation of a "molecular pattern of cancer" for localization of the defect in Wnt signaling cascade in the each case.  相似文献   

11.
12.
Mammalian tooth crown formation has long served as a model for investigating how patterning and morphogenesis are orchestrated during development. However, the mechanism underlying root patterning and morphogenesis remains poorly understood. In this study, we find that Lhx6 labels a subpopulation of root progenitor cells in the apical dental mesenchyme, which is closely associated with furcation development. Loss of Lhx6 leads to furcation and root number defects, indicating that Lhx6 is a key root patterning regulator. Among the multiple cellular events regulated by Lhx6 is the odontoblast fate commitment of progenitor cells, which it controls in a cell-autonomous manner. Specifically, Lhx6 loss leads to elevated expression of the Wnt antagonist Sfrp2 and down-regulation of Wnt signaling in the furcation region, while overactivation of Wnt signaling in Lhx6+ progenitor cells partially restore the furcation defects in Lhx6-/- mice. Collectively, our findings have important implications for understanding organ morphogenesis and future strategies for tooth root regeneration.  相似文献   

13.
The link between oncogenesis and normal development is well illustrated by the study of the Wnt family of proteins. The first Wnt gene (int-1) was identified over a decade ago as a proto-oncogene, activated in response to proviral insertion of a mouse mammary tumor virus. Subsequently, the discovery that Drosophila wingless, a developmentally important gene, is homologous to int-1 supported the notion that int-1 may have a role in normal development. In the last few years it has been recognized that int-1 and Wingless belong to a large family of related glyco-proteins found in vertebrates and invertebrates. In recognition of this, members of this family have been renamed Wnts, an amalgam of int and Wingless. Investigation of Wnt genes in Xenopus and mouse indicates that Wnts have a role in cell proliferation, differentiation and body axis formation. Further analysis in Drosophila has revealed that Wingless function is required in several developmental processes in the embryo and imaginal discs. In addition, a genetic approach has identified some of the molecules required for the transmission and reception of the Wingless signal. We will review recent data which have contributed to our growing understanding of the function and mechanism of Drosophila Wingless signaling in cell fate determination, growth and specification of pattern.  相似文献   

14.
15.
Studies on the mechanism of activation of canonical transient receptor potential (TRPC) channels have often yielded conflicting results. In the current study, we have investigated the influence of expression level on the mode of regulation of TRPC3 channels. At relatively low levels of expression in DT40 chicken B-lymphocytes, TRPC3 was activated by the depletion of Ca2+ stores. Expression was increased by either transfecting with a 10-fold greater concentration of plasmid or transfecting with TRPC3 under control of a more efficient avian beta-actin promoter. At higher levels of expression, TRPC3 was no longer store-operated but could be activated through receptor-coupled phospholipase C. Under these expression conditions, TRPC3 was efficiently activated in DT40 cells lacking inositol 1,4,5-trisphosphate receptors. The Ca2+ store-operated channels formed upon expression of TRPC3 at limited levels were blocked by gadolinium; the receptor-activated channels formed upon expression of higher levels of TRPC3 were insensitive to gadolinium. These findings indicate that a single ion channel protein can form or contribute to the formation of channels regulated in two very distinct ways, i.e. either by phospholipase C-derived messengers or Ca2+ store-depletion. The mechanism of regulation of the channels depends on their level of expression.  相似文献   

16.
In zebrafish, the program for dorsal specification begins soon after fertilization. Dorsal determinants are localized initially to the vegetal pole, then transported to the blastoderm, where they are thought to activate the canonical Wnt pathway, which induces the expression of dorsal-specific genes. We identified a novel maternal-effect recessive mutation, tokkaebi (tkk), that affects formation of the dorsal axis. Severely ventralized phenotypes, including a lack of dorso-anterior structures, were seen in 5-100% of the embryos obtained from tkk homozygous transmitting females. tkk embryos displayed defects in the nuclear accumulation of beta-catenin on the dorsal side, and reduced or absent expression of dorsal-specific genes. Mesoderm and endoderm formation outside the dorsal axis was not significantly affected. Injection of RNAs for activated beta-catenin, dominant-negative forms of Axin1 and GSK3beta, and wild-type Dvl3, into the tkk embryos suppressed the ventralized phenotypes and/or dorsalized the embryos, and restored or induced an ectopic and expanded expression of bozozok/dharma and goosecoid. However, dorsalization by wnt RNAs was affected in the tkk embryos. Inhibition of cytoplasmic calcium release elicited an ectopic and expanded expression of chordin in the wild-type, but did not restore chordin expression efficiently in the tkk embryos. These data indicate that the tkk gene product functions upstream of or parallel to the beta-catenin-degradation machinery to control the stability of beta-catenin. The tkk locus was mapped to chromosome 16. These data provide genetic evidence that the maternally derived canonical Wnt pathway upstream of beta-catenin is involved in dorsal axis formation in zebrafish.  相似文献   

17.
Wnt signaling plays crucial roles in neural development. We previously identified Neucrin, a neural-specific secreted antagonist of canonical Wnt/β-catenin signaling, in humans and mice. Neucrin has one cysteine-rich domain, in which the positions of 10 cysteine residues are similar to those in the second cysteine-rich domain of Dickkopfs, secreted Wnt antagonists. Here, we have identified zebrafish neucrin to understand its roles in vivo. Zebrafish Neucrin also has one cysteine-rich domain, which is significantly similar to that of mouse Neucrin. Zebrafish neucrin was also predominantly expressed in developing neural tissues. To examine roles of neucrin in neural development, we analyzed neucrin knockdown embryos. Neural development in zebrafish embryos was impaired by the knockdown of neucrin. The knockdown of neucrin caused increased expression of the Wnt/β-catenin target genes. In contrast, overexpression of neucrin reduced the expression of the Wnt/β-catenin target genes. The knockdown of neucrin affected specification of dorsal region in the midbrain and hindbrain. The knockdown of neucrin also suppressed neuronal differentiation and caused increased cell proliferation and apoptosis in developing neural tissues. Neucrin is a unique secreted Wnt antagonist that is predominantly expressed in developing neural tissues and plays roles in neural development in zebrafish.  相似文献   

18.
Wnts are a family of evolutionary-conserved secreted signaling molecules critically involved in a variety of developmental processes and in cell fate determination. A growing body of evidence suggests that Wnt signaling plays a crucial role in the influence of bone marrow stromal microenvironment on the balance between hematopoietic stem cell self-renewal and differentiation. Emerging clinical and experimental evidence also indicates Wnt signaling involvement in the disruption of the latter balance in hematologic malignancies, where the stromal microenvironment favors the homing of cancer cells to the bone marrow, as well as leukemia stem cell development and chemoresistance. In the present review, we summarize and discuss the role of the canonical Wnt signaling pathway in normal hematopoiesis and hematologic malignancies, with regard to recent findings on the stromal microenvironment involvement in these process and diseases.  相似文献   

19.
The canonical Wnt signalling pathway has been implicated in organogenesis and self‐renewal of essentially all stem cell systems. In vivo reporter systems are crucial to assess the role of Wnt signalling in the biology and pathology of stem cell systems. We set out to develop a Turquoise (TQ) fluorescent protein based Wnt reporter. We used a CRISPR‐Cas9 approach to insert a TQ fluorescent protein encoding gene into the general Wnt target gene Axin2, thereby establishing a Wnt reporter mouse similar to previously generated Wnt reporter mice but with the mTurquoise2 gene instead of E. coli‐β‐galactosidase (LacZ). The use of mTurquoise2 is especially important in organ systems in which cells need to a be alive for further experimentation such as in vitro activation or transplantation studies. We here report successful generation of Axin2‐TQ mice and show that cells from these mice faithfully respond to Wnt signals. High Wnt signals were detected in the intestinal crypts, a classical Wnt signalling site in vivo, and by flow cytometry in the thymus. These mice are an improved tool to further elucidate the role of Wnt signalling in vivo.  相似文献   

20.
Predicting the potential physiological outcome(s) of any given molecular pathway is complex because of cross-talk with other pathways. This is particularly evident in the case of the nuclear hormone receptor and canonical Wnt pathways, which regulate cell growth and proliferation, differentiation, apoptosis, and metastatic potential in numerous tissues. These pathways are known to intersect at many levels: in the intracellular space, at the membrane, in the cytoplasm, and within the nucleus. The outcomes of these interactions are important in the control of stem cell differentiation and maintenance, feedback loops, and regulating oncogenic potential. The aim of this review is to demonstrate the importance of considering pathway cross-talk when predicting functional outcomes of signaling, using nuclear hormone receptor/canonical Wnt pathway cross-talk as an example.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号