首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The mammillary body, a ventral specialization of the caudal hypothalamus, lies close to the transition between epichordal and prechordal parts of the forebrain (Puelles and Rubenstein, 2003). This report examines its presumed causal connection with either prechordal or notochordal mesodermal induction, as well as the timing of its specification, in the context of early ventral forebrain patterning. It was recently found that the ephrin receptor gene EphA7 is selectively expressed in the mammillary pouch from early stages of development (HH14: García-Calero et al., 2006). We used mammillary EphA7 expression as well as ventral hypothalamic expression of the gene markers Nkx2.1 and Shh to analyze experimental effects on mammillary specification and morphogenesis after axial mesoderm ablation at stages HH4+ to HH6. Progressively delayed ablation of the prechordal plate revealed its sequential implication in molecular specification of the entire ventral forebrain, including the mammillary and tuberal regions of the hypothalamus. We observed differential contact requirements for induction by the prechordal plate of all the forebrain regions expressing Shh and Nkx2.1, including distant subpallial ones. In contrast, ablation of the anterior notochordal tip at these stages did not elicit significant patterning changes, particularly no effects on mammillary EphA7 expression or mammillary pouch development.  相似文献   

3.
Mouse mutants have allowed us to gain significant insight into axis development. However, much remains to be learned about the cellular and molecular basis of early forebrain patterning. We describe a lethal mutation mouse strain generated using promoter-trap mutagenesis. The mutants exhibit severe forebrain truncation in homozygous mouse embryos and various craniofacial defects in heterozygotes. We show that the defects are caused by disruption of the gene encoding cellular nucleic acid binding protein (CNBP); Cnbp transgenic mice were able to rescue fully the mutant phenotype. Cnbp is first expressed in the anterior visceral endoderm (AVE) and, subsequently, in the anterior definitive endoderm (ADE), anterior neuroectoderm (ANE), anterior mesendoderm (AME), headfolds and forebrain. In Cnbp(-/-) embryos, the visceral endoderm remains in the distal tip of the conceptus and the ADE fails to form, whereas the node and notochord form normally. A substantial reduction in cell proliferation was observed in the anterior regions of Cnbp(-/-) embryos at gastrulation and neural-fold stages. In these regions, Myc expression was absent, indicating CNBP targets Myc in rostral head formation. Our findings demonstrate that Cnbp is essential for the forebrain induction and specification.  相似文献   

4.
We identified a zebrafish homologue of Dickkopf-1 (Dkk1), which was previously identified in Xenopus as a Wnt inhibitor with potent head-inducing activity. Zebrafish dkk1 is expressed in the dorsal marginal blastoderm and also in the dorsal yolk syncytial layer after mid-blastula transition. At later blastula stages, the expression expands to the entire blastoderm margin. During gastrulation, dkk1-expressing cells are confined to the embryonic shield and later to the anterior axial mesendoderm, prospective prechordal plate. Embryos, in which dkk1 was ectopically expressed, exhibited enlarged forebrain, eyes, and axial mesendoderm such as prechordal plate and notochord. dkk1 expression in the dorso-anterior mesendoderm during gastrulation was prominently reduced in zebrafish mutants bozozok (boz), squint (sqt), and one-eyed pinhead (oep), which all display abnormalities in the formation and function of the Spemann organizer and axial mesendoderm. dkk1 expression was normal in these embryos during the blastula period, indicating that zygotic functions of these genes are required for maintenance but not establishment of dkk1 expression. Overexpression of dkk1 suppressed defects in the development of forebrain, eyes, and notochord in boz mutants. Overexpression of dkk1 promoted anterior neuroectoderm development in the embryos injected with antivin RNA, which lack most of the mesoderm and endoderm, suggesting that Dkk1 can affect regionalization of neuroectoderm independently of dorso-anterior mesendoderm. These data indicate that Dkk1, expressed in dorsal mesendoderm, functions in the formation of both the anterior nervous system and the axial mesendoderm in zebrafish.  相似文献   

5.
Nodal and Nodal-related factors play fundamental roles in a number of developmental processes, including mesoderm and endoderm formation, patterning of the anterior neural plate, and determination of bilateral asymmetry in vertebrates. pitx2, a paired-like homeobox gene, has been proposed to act downstream of Nodal in the gene cascade providing left-right cues to the developing organs. Here, we report that pitx2 is required early in the Nodal signaling pathway for specification of the endodermal and mesodermal germ layers. We found that pitx2 is expressed very early during Xenopus and zebrafish development and in many regions where Nodal signaling is required, including the presumptive mesoderm and endoderm at the blastula and gastrula stages and the prechordal mesoderm at later stages. In Xenopus embryos, overexpression of pitx2 caused ectopic expression of goosecoid and sox-17 and interfered with mesoderm formation. Overexpression of pitx2 in Xenopus animal cap explants partially mimics the effects of Nodal overexpression, suggesting that pitx2 is a mediator of Nodal signaling during specification of the endoderm and prechordal plate, but not during mesoderm induction. We further demonstrate that pitx2 is induced by Nodal signaling in Xenopus animal caps and that the early expression of zebrafish pitx2 is absent when the Nodal signaling pathway is inactive. Inhibition of pitx2 function using a chimeric EnR-pitx2 blocked specification of the mesoderm and endoderm and caused severe embryonic defects resembling those seen when Nodal signaling is inhibited. Following inhibition of pitx2 function, the fate of ventral vegetal blastomeres was shifted from an endodermal to a more mesodermal fate, an effect that was reversed by wild-type pitx2. Finally, we show that inhibition of pitx2 function interferes with the response of cells to Nodal signaling. Our results provide direct evidence that pitx2 function is required for normal specification of the endodermal and mesodermal germ layers.  相似文献   

6.
We have characterised orthologues of the genes fork head and goosecoid in the gastropod Patella vulgata. In this species, the anterior-posterior (AP) axis is determined just before gastrulation, and leads to the specification of two mesodermal components on each side of the presumptive endoderm, one anterior (ectomesoderm), and one posterior (endomesoderm). Both fork head and goosecoid are expressed from the time the AP axis is specified, up to the end of gastrulation. fork head mRNA is detected in the whole endoderm, as well as in the anterior mesoderm, whereas goosecoid is only expressed anteriorly, in the three germ layers. The two genes are thus coexpressed in the anterior mesoderm, suggesting the latter's homology with vertebrate prechordal mesoderm. In addition, since prechordal plate is known to belong to an anterior, so called "head organiser", and since its inductive role is dependent on the function of the vertebrate fork head and goosecoid orthologues, we further suggest that the anterior mesoderm may also have a role in anterior inductive patterning in Spiralia. Finally, we propose that a mode of axial development involving two organisers, one anterior and one posterior, is ancestral to the Bilateria, and that both organisers evolved from the single head organiser of a putative hydra-like ancestor.  相似文献   

7.
We correlated available fate maps for the avian neural plate at stages HH4 and HH8 with the progress of local molecular specification, aiming to determine when the molecular specification maps of the primary longitudinal and transversal domains of the anterior forebrain agree with the fate mapped data. To this end, we examined selected gene expression patterns as they normally evolved in whole mounts and sections between HH4 and HH8 (or HH10/11 in some cases), performed novel fate-mapping experiments within the anterior forebrain at HH4 and examined the results at HH8, and correlated grafts with expression of selected gene markers. The data provided new details to the HH4 fate map, and disclosed some genes (e.g., Six3 and Ganf) whose expression domains initially are very extensive and subsequently retract rostralwards. Apart from anteroposterior dynamics, some genes soon became downregulated at the prospective forebrain floor plate, or allowed to identify an early roof plate domain (dorsoventral pattern). Peculiarities of the telencephalon (initial specification and differentiation of pallium versus subpallium) are contemplated. The basic anterior forebrain subdivisions seem to acquire correlated specification and fate mapping patterns around stage HH8.  相似文献   

8.
The definitive endoderm forms during gastrulation and is rapidly transformed into the gut tube which is divided along the anterior-posterior axis into the foregut, midgut, and hindgut. Lineage tracing and genetic analysis have examined the origin of the definitive endoderm during gastrulation and demonstrated that the majority of definitive endoderm arises at the anterior end of the primitive streak (APS). Foxh1 and Foxa2 have been shown to play a role in specification of the APS and definitive endoderm. However, prior studies have focused on the role of these factors in specification of foregut definitive endoderm, while their role in the specification of midgut and hindgut definitive endoderm is less understood. Furthermore, previous analyses of these mutants have utilized definitive endoderm markers that are restricted to the anterior endoderm, expressed in extraembryonic endoderm, or present in other germ layers. Here, we characterized the expression of several novel definitive and visceral endoderm markers in Foxh1 and Foxa2 null embryos. In accordance with previous studies, we observed a deficiency of foregut definitive endoderm resulting in incorporation of visceral endoderm into the foregut. Interestingly, this analysis revealed that formation of midgut and hindgut definitive endoderm is unaffected by loss of Foxh1 or Foxa2. This finding represents a significant insight into specification and regionalization of mouse definitive endoderm.  相似文献   

9.
BACKGROUND: The mouse anterior visceral endoderm, an extraembryonic tissue, expresses several genes essential for normal development of structures rostral to the anterior limit of the notochord and has been termed the head organizer. This tissue also has heart-inducing activity and expresses mCer1 which, like its Xenopus homolog cerberus, can induce markers of cardiac specification and anterior neural tissue when ectopically expressed. We investigated the relationship between head and heart induction in Xenopus embryos, which lack extraembryonic tissues. RESULTS: We found three regions of gene expression in the Xenopus organizer: deep endoderm, which expressed cerberus; prechordal mesoderm, which showed overlapping but non-identical expression of genes characteristic of the murine head organizer, such as XHex and XANF-1; and leading-edge dorsoanterior endoderm, which expressed both cerberus and a subset of the genes expressed by the prechordal mesoderm. Microsurgical ablation of the cerberus-expressing endoderm decreased the incidence of heart, but not head, formation. Removal of prechordal mesoderm, in contrast, caused deficits of anterior head structures. Finally, although misexpression of cerberus induced ectopic heads, it was unable to induce genes thought to participate in head induction. CONCLUSIONS: In Xenopus, the cerberus-expressing endoderm is required for heart, but not head, inducing activity. Therefore, this tissue is not the topological equivalent of the murine anterior visceral endoderm. We propose that, in Xenopus, cerberus is redundant to other bone morphogenetic protein (BMP) and Wnt antagonists located in prechordal mesoderm for head induction, but may be necessary for heart induction.  相似文献   

10.
The establishment of the vertebrate body plan involves patterning of the ectoderm, mesoderm, and endoderm along the dorsoventral and antero-posterior axes. Interactions among numerous signaling molecules from several multigene families, including Wnts, have been implicated in regulating these processes. Here we provide evidence that the zebrafish colgate(b382) (col) mutation results in increased Wnt signaling that leads to defects in dorsal and anterior development. col mutants display early defects in dorsoventral patterning manifested by a decrease in the expression of dorsal shield-specific markers and ectopic expression of ventrolaterally expressed genes during gastrulation. In addition to these early patterning defects, col mutants display a striking regional posteriorization within the neuroectoderm, resulting in a reduction in anterior fates and an expansion of posterior fates within the forebrain and midbrain-hindbrain regions. We are able to correlate these phenotypes to the overactivation of Wnt signaling in col mutants. The early dorsal and anterior patterning phenotypes of the col mutant embryos are selectively rescued by inactivation of Wnt8 function by morpholino translational interference. In contrast, the regionalized neuroectoderm posterioriorization phenotype is selectively rescued by morpholino-mediated inactivation of Wnt8b. These results suggest that col-mediated antagonism of early and late Wnt-signaling activity during gastrulation is normally required sequentially for both early dorsoventral patterning and the specification and patterning of regional fates within the anterior neuroectoderm.  相似文献   

11.
Cell migration and cell rearrangements are critical for establishment of the body plan of vertebrate embryos. The first step in organization of the body plan of the mouse embryo, specification of the anterior-posterior body axis, depends on migration of the anterior visceral endoderm from the distal tip of the embryo to a more proximal region overlying the future head. The anterior visceral endoderm (AVE) is a cluster of extra-embryonic cells that secretes inhibitors of the Wnt and Nodal pathways to inhibit posterior development. Because Rac proteins are crucial regulators of cell migration and mouse Rac1 mutants die early in development, we tested whether Rac1 plays a role in AVE migration. Here we show that Rac1 mutant embryos fail to specify an anterior-posterior axis and, instead, express posterior markers in a ring around the embryonic circumference. Cells that express the molecular markers of the AVE are properly specified in Rac1 mutants but remain at the distal tip of the embryo at the time when migration should take place. Using tissue specific deletions, we show that Rac1 acts autonomously within the visceral endoderm to promote cell migration. High-resolution imaging shows that the leading wild-type AVE cells extend long lamellar protrusions that span several cell diameters and are polarized in the direction of cell movement. These projections are tipped by filopodia-like structures that appear to sample the environment. Wild-type AVE cells display hallmarks of collective cell migration: they retain tight and adherens junctions as they migrate and exchange neighbors within the plane of the visceral endoderm epithelium. Analysis of mutant embryos shows that Rac1 is not required for intercellular signaling, survival, proliferation, or adhesion in the visceral endoderm but is necessary for the ability of visceral endoderm cells to extend projections, change shape, and exchange neighbors. The data show that Rac1-mediated epithelial migration of the AVE is a crucial step in the establishment of the mammalian body plan and suggest that Rac1 is essential for collective migration in mammalian tissues.  相似文献   

12.
After implantation, mouse embryos deficient for the activity of the transforming growth factor-beta member Nodal fail to form both the mesoderm and the definitive endoderm. They also fail to specify the anterior visceral endoderm, a specialized signaling center which has been shown to be required for the establishment of anterior identity in the epiblast. Our study reveals that Nodal-/- epiblast cells nevertheless express prematurely and ectopically molecular markers specific of anterior fate. Our analysis shows that neural specification occurs and regional identities characteristic of the forebrain are established precociously in the Nodal-/- mutant with a sequential progression equivalent to that of wild-type embryo. When explanted and cultured in vitro, Nodal-/- epiblast cells readily differentiate into neurons. Genes normally transcribed in organizer-derived tissues, such as Gsc and Foxa2, are also expressed in Nodal-/- epiblast. The analysis of Nodal-/-;Gsc-/- compound mutant embryos shows that Gsc activity plays no critical role in the acquisition of forebrain characters by Nodal-deficient cells. This study suggests that the initial steps of neural specification and forebrain development may take place well before gastrulation in the mouse and highlights a possible role for Nodal, at pregastrula stages, in the inhibition of anterior and neural fate determination.  相似文献   

13.
Growth and Differentiation Factor 1 (GDF-1) has been implicated in left-right patterning of the mouse embryo but has no other known function. Here, we demonstrate a genetic interaction between Gdf1 and Nodal during anterior axis development. Gdf1-/-;Nodal+/- mutants displayed several abnormalities that were not present in either Gdf1-/- or Nodal+/- single mutants, including absence of notochord and prechordal plate, and malformation of the foregut; organizing centers implicated in the development of the anterior head and branchial arches, respectively. Consistent with these deficits, Gdf1-/-;Nodal+/- mutant embryos displayed a number of axial midline abnormalities, including holoprosencephaly, anterior head truncation, cleft lip, fused nasal cavity, and lack of jaws and tongue. The absence of these defects in single mutants indicated a synergistic interaction between Nodal and GDF-1 in the node, from which the axial mesendoderm that gives rise to the notochord, prechordal plate, and foregut endoderm originates, and where the two factors are co-expressed. This notion was supported by a severe downregulation of FoxA2 and goosecoid in the anterior primitive streak of double mutant embryos. Unlike that in the lateral plate mesoderm, Nodal expression in the node was independent of GDF-1, indicating that both factors act in parallel to control the development of mesendodermal precursors. Receptor reconstitution experiments indicated that GDF-1, like Nodal, can signal through the type I receptors ALK4 and ALK7. However, analysis of compound mutants indicated that ALK4, but not ALK7, was responsible for the effects of GDF-1 and Nodal during anterior axis development. These results indicate that GDF-1 and Nodal converge on ALK4 in the anterior primitive streak to control the formation of organizing centers that are necessary for normal forebrain and branchial arch development.  相似文献   

14.
Previous analysis employing chimeric and transgenic rescue experiments has suggested that Otx2 is required in the neuroectoderm for development of the forebrain region. In order to elucidate the precise role of Otx2 in forebrain development, we attempted to generate an allelic series of Otx2 mutations by Flp- and Cre-mediated recombination for the production of conditional knock-out mice. Unexpectedly, the neo-cassette insertion created a hypomorphic Otx2 allele; consequently, the phenotype of compound mutant embryos carrying both a hypomorphic and a null allele (Otx2(frt-neo/-)) was analyzed. Otx2(frt-neo/-) mutant mice died at birth, displaying rostral head malformations. Molecular marker analysis demonstrated that Otx2(frt-neo/-) mutant embryos appeared to undergo anterior-posterior axis generation and induction of anterior neuroectoderm normally; however, these mutants subsequently failed to correctly specify the forebrain region. As the rostral margin of the neural plate, termed the anterior neural ridge (ANR), plays crucial roles with respect to neural plate specification, we examined expression of molecular markers for the ANR and the neural plate; moreover, neural plate explant studies were performed. Analyses revealed that telencephalic gene expression did not occur in mutant embryos due to defects of the neural plate; however, the mutant ANR bore normal induction activity on gene expression. These results further suggest that Otx2 dosage may be crucial in the neural plate with respect to response to inductive signals primarily from the ANR for forebrain specification.  相似文献   

15.
Two populations of axial mesoderm cells can be recognised in the chick embryo, posterior notochord and anterior prechordal mesoderm. We have examined the cellular and molecular events that govern the specification of prechordal mesoderm. We report that notochord and prechordal mesoderm cells are intermingled and share expression of many markers as they initially extend out of Hensen's node. In vitro culture studies, together with in vivo grafting experiments, reveal that early extending axial mesoderm cells are labile and that their character may be defined subsequently through signals that derive from anterior endodermal tissues. Anterior endoderm elicits aspects of prechordal mesoderm identity in extending axial mesoderm by repressing notochord characteristics, briefly maintaining gsc expression and inducing BMP7 expression. Together these experiments suggest that, in vivo, signalling by anterior endoderm may determine the extent of prechordal mesoderm. The transforming growth factor (beta) (TGFbeta) superfamily members BMP2, BMP4, BMP7 and activin, all of which are transiently expressed in anterior endoderm mimic distinct aspects of its patterning actions. Together our results suggest that anterior endoderm-derived TGFbetas may specify prechordal mesoderm character in chick axial mesoderm.  相似文献   

16.
17.
Nodal signaling patterns the organizer   总被引:5,自引:0,他引:5  
Spemann's organizer plays an essential role in patterning the vertebrate embryo. During gastrulation, organizer cells involute and form the prechordal plate anteriorly and the notochord more posteriorly. The fate mapping and gene expression analyses in zebrafish presented in this study reveal that this anteroposterior polarity is already initiated in the organizer before gastrulation. Prechordal plate progenitors reside close to the blastoderm margin and express the homeobox gene goosecoid, whereas notochord precursors are located further from the margin and express the homeobox gene floating head. The nodal-related genes cyclops and squint are expressed at the blastoderm margin and are required for prechordal plate and notochord formation. We show that differential activation of the Nodal signaling pathway is essential in establishing anteroposterior pattern in the organizer. First, overexpression of cyclops and squint at different doses leads to the induction of floating head at low doses and the induction of both goosecoid and floating head at higher doses. Second, decreasing Nodal signaling using different concentrations of the antagonist Antivin inhibits goosecoid expression at low doses and blocks expression of both goosecoid and floating head at higher doses. Third, attenuation of Nodal signaling in zygotic mutants for the EGF-CFC gene one-eyed pinhead, an essential cofactor for Nodal signaling, leads to the loss of goosecoid expression and expansion of floating head expression in the organizer. Concomitantly, cells normally fated to become prechordal plate are transformed into notochord progenitors. Finally, activation of Nodal signaling at different times suggests that prechordal plate specification requires sustained Nodal signaling, whereas transient signaling is sufficient for notochord development. Together, these results indicate that differential Nodal signaling patterns the organizer before gastrulation, with the highest level of activity required for anterior fates and lower activity essential for posterior fates.  相似文献   

18.
The embryonic organizer represents the major regulatory centre for the establishment of the body axes during gastrulation. Here, we discuss the endodermal contributions to the organizer of amphibia, birds and mammals. We differentiate between the definitive, prospective liver endoderm, and the primitive, prospective extraembryonic endoderm, the latter addressed as the hypoblast in birds and the visceral endoderm in mammals. We further discuss the role of the prechordal plate, a mesendodermal tissue underlying the prospective forebrain. Our conclusion points out the similarity of the amphibian and the avian organizer, with a concentration of inductive potentials in time and space. On the other hand, we discuss the unique feature of mammals, that have shifted certain aspects of the head organizer into the anterior visceral endoderm.  相似文献   

19.
Retinoids, and in particular retinoic acid (RA), are known to induce posterior fates in neural tissue. However, alterations in retinoid signalling dramatically affect anterior development. Previous reports have demonstrated a late role for retinoids in patterning craniofacial and forebrain structures, but an earlier role in anterior patterning is not well understood. We show that enzymes involved in synthesizing retinoids are expressed in the avian hypoblast and in tissues directly involved in head patterning, such as anterior definitive endoderm and prechordal mesendoderm. We found that in the vitamin A-deficient (VAD) quail model, which lacks biologically active RA from the first stages of development, anterior endodermal markers such as Bmp2, Bmp7, Hex and the Wnt antagonist crescent are affected during early gastrulation. Furthermore, prechordal mesendodermal and prospective ventral telencephalic markers are expanded posteriorly, Shh expression in the axial mesoderm is reduced, and Bmp2 and Bmp7 are abnormally expressed in the ventral midline of the neural tube. At early somite stages, VAD embryos have increased cell death in ventral neuroectoderm and foregut endoderm, but normal cranial neural crest production, whereas at later stages extensive apoptosis occurs in head mesenchyme and ventral neuroectoderm. As a result, VAD embryos end up with a single and reduced telencephalic vesicle and an abnormally patterned diencephalon. Therefore, we propose that retinoids have a dual role in patterning the anterior forebrain during development. During early gastrulation, RA acts in anterior endodermal cells to modulate the anteroposterior (AP) positional identity of prechordal mesendodermal inductive signals to the overlying neuroectoderm. Later on, at neural pore closure, RA is required for patterning of the mesenchyme of the frontonasal process and the forebrain by modulating signalling molecules involved in craniofacial morphogenesis.  相似文献   

20.
We analyzed the notochord formation, formation of the prechordal plate, and patterning of anteroposterior regional specificity of the involuting and extending archenteron roof of a urodele, Cynops pyrrhogaster. The lower (LDMZ) and upper (UDMZ) domains of the dorsal marginal zone (DMZ) of the early gastrula involuted and formed two distinct domains: the anterior fore-notochordal endodermal roof and the posterior domain containing the prospective notochord. Cygsc is expressed in the LDMZ from the onset of gastrulation, and the Cygsc-expressing LDMZ planarly induces the notochord in the UDMZ at the early to mid gastrula stages. At the mid to late gastrula stages, part of the Cygsc-expressing LDMZ is confined to the prechordal plate. On the other hand, Cybra expression only begins at mid gastrula stage, coincident with notochord induction at this stage. Anteroposterior regional specificity of the neural plate was patterned by the posterior domain of the involuting archenteron roof containing the prospective notochord at the mid to late gastrula stages. Cynops gastrulation thus differs significantly from Xenopus gastrulation in that the regions of the DMZ are specified from the onset of gastrulation, while the equivalent state of specification does not occur in Cynops until the middle of gastrulation. Thus we propose that Cynops gastrulation is divided into two phases: a notochord induction phase in the early to mid gastrula, and a neural induction phase in the mid to late gastrula.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号