首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
ErbB2/Neu oncogene is overexpressed in 25% of invasive/metastatic breast cancers. We have found that deletion of heat shock factor Hsf1 in mice overexpressing ErbB2/Neu significantly reduces mammary tumorigenesis and metastasis. Hsf1+/−ErbB2/Neu+ tumors exhibit reduced cellular proliferative and invasive properties associated with reduced activated ERK1/2 and reduced epithelial-mesenchymal transition (EMT). Hsf1+/+Neu+ mammary epithelial cells exposed to TGFβ show high levels of ERK1/2 activity and EMT; this is associated with reduced expression of E-cadherin and increased expression of Slug and vimentin, a mesenchymal marker. In contrast, Hsf1−/−Neu+ or Hsf1+/+Neu+ cells do not exhibit activated ERK1/2 and show reduced EMT in the presence of TGFβ. The ineffective activation of the RAS/RAF/MEK/ERK1/2 signaling pathway in cells with reduced levels of HSF1 is due to the low levels of HSP90 in complex with RAF1 that are required for RAF1 stability and maturation. These results indicate a powerful inhibitory effect conferred by HSF1 downstream target genes in the inhibition of ErbB2-induced breast cancers in the absence of the Hsf1 gene.  相似文献   

4.
5.
6.
7.
8.
The in vitro production of mammalian embryos suffers from high frequencies of developmental failure due to excessive levels of permanent embryo arrest and apoptosis caused by oxidative stress. The p66Shc stress adaptor protein controls oxidative stress response of somatic cells by regulating intracellular ROS levels through multiple pathways, including mitochondrial ROS generation and the repression of antioxidant gene expression. We have previously demonstrated a strong relationship with elevated p66Shc levels, reduced antioxidant levels and greater intracellular ROS generation with the high incidence of permanent cell cycle arrest of 2–4 cell embryos cultured under high oxygen tensions or after oxidant treatment. The main objective of this study was to establish a functional role for p66Shc in regulating the oxidative stress response during early embryo development. Using RNA interference in bovine zygotes we show that p66Shc knockdown embryos exhibited increased MnSOD levels, reduced intracellular ROS and DNA damage that resulted in a greater propensity for development to the blastocyst stage. P66Shc knockdown embryos were stress resistant exhibiting significantly reduced intracellular ROS levels, DNA damage, permanent 2–4 cell embryo arrest and diminished apoptosis frequencies after oxidant treatment. The results of this study demonstrate that p66Shc controls the oxidative stress response in early mammalian embryos. Small molecule inhibition of p66Shc may be a viable clinical therapy to increase the developmental potential of in vitro produced mammalian embryos.  相似文献   

9.
Although it is established that cAMP accumulation plays a pivotal role in preventing meiotic resumption in mammalian oocytes, the mechanisms controlling cAMP levels in the female gamete have remained elusive. Both production of cAMP via GPCRs/Gs/adenylyl cyclases endogenous to the oocyte as well as diffusion from the somatic compartment through gap junctions have been implicated in maintaining cAMP at levels that preclude maturation. Here we have used a genetic approach to investigate the different biochemical pathways contributing to cAMP accumulation and maturation in mouse oocytes. Because cAMP hydrolysis is greatly decreased and cAMP accumulates above a threshold, oocytes deficient in PDE3A do not resume meiosis in vitro or in vivo, resulting in complete female infertility. In vitro, inactivation of Gs or downregulation of the GPCR GPR3 causes meiotic resumption in the Pde3a null oocytes. Crossing of Pde3a/ mice with Gpr3/ mice causes partial recovery of female fertility. Unlike the complete meiotic block of the Pde3a null mice, oocyte maturation is restored in the double knockout, although it occurs prematurely as described for the Gpr3/ mouse. The increase in cAMP that follows PDE3A ablation is not detected in double mutant oocytes, confirming that GPR3 functions upstream of PDE3A in the regulation of oocyte cAMP. Metabolic coupling between oocytes and granulosa cells was not affected in follicles from the single or double mutant mice, suggesting that diffusion of cAMP is not prevented. Finally, simultaneous ablation of GPR12, an additional receptor expressed in the oocyte, does not modify the Gpr3/ phenotype. Taken together, these findings demonstrate that Gpr3 is epistatic to Pde3a and that fertility as well as meiotic arrest in the PDE3A-deficient oocyte is dependent on the activity of GPR3. These findings also suggest that cAMP diffusion through gap junctions or the activity of additional receptors is not sufficient by itself to maintain the meiotic arrest in the mouse oocyte.  相似文献   

10.
11.
Interspecies hybridization of bovids occurs between domestic cattle and at least three other species; American bison (Bison bison), yak (Bos grunniens) and banteng (Bos banteng). Birth of a cattle × buffalo (Bubalus bubalis) hybrid has reportedly occurred in Russia and in China, but these reports were not authenticated. Such hybrids could be important in improving livestock production and management of diseases that impede production in tropical Africa. This study investigated hybridization between cattle and its closest African wild bovid relative, the African buffalo (Syncerus caffer caffer). In an attempt to produce cattle × buffalo hybrid embryos in vitro, matured cattle oocytes were subjected to a standard in vitro fertilization (IVF) procedure with either homologous cattle (n = 1166 oocytes) or heterologous African buffalo (n = 1202 oocytes) frozen-thawed epididymal sperm. After IVF, 67.2% of the oocytes inseminated with the homologous cattle sperm cleaved. In contrast, fertilization with buffalo sperm resulted in only a 4.6% cleavage rate. The cleavage intervals were also slower in hybrid embryos than in the IVF-derived cattle embryos. Of the cleaved homologous cattle embryos 52.2% progressed to the morula stage compared with 12.7% for the buffalo hybrid embryos. No hybrid embryos developed beyond the early morula stage, while 40.1% of the cleaved cattle × cattle embryos developed to the blastocyst stage. Transfer of buffalo hybrid IVF embryos to domestic cattle surrogates resulted in no pregnancies at 60 days post-transfer. This study indicates that interspecies fertilization of cattle oocytes with African buffalo epididymal sperm can occur in vitro, and that a barrier to hybridization occurs in the early stages of embryonic development. Chromosomal disparity is likely the cause of the fertilization abnormalities, abnormal development and subsequent arrest impairing the formation of hybrid embryos beyond the early morula stage. Transfer of the buffalo hybrid embryos did not rescue the embryos from development arrest.  相似文献   

12.
13.
14.
Activation of Heat shock factor 4-mediated heat shock response is closely associated with postnatal lens development. HSF4 controls the expression of small heat shock proteins (e.g. HSP25 and CRYAB) in lens epithelial cells. However, their roles in modulating lens epithelium homeostasis remain unclear. In this paper, we find that HSF4 is developmentally expressed in mouse lens epithelium and fiber tissue. HSF4 and alpha B-crystallin can selectively protect lens epithelial cells from cisplatin and H2O2 induced apoptosis by stabilizing mitochondrial membrane potential (ΔYm) and reducing ROS production. In addition, to our surprise, HSF4 is involved in upregulating lysosome activity. We found mLEC/HA-Hsf4 cells to have increased DLAD expression, lysosome acidity, cathepsin B activity, and degradation of plasmid DNA and GFP-LC3 protein when compared to mLEC/Hsf4-/- cells. Knocking down Cryab from mLEC/HA-Hsf4 cells inhibits HSF4-mediated lysosome acidification, while overexpression of CRYAB can upregulate cathepsin B activity in mLEC/Hsf4-/- cells. CRAYAB can interact with ATP6V1/A the A subunit of the H+ pump vacuolar ATPase, and is colocalized to lamp1 and lamp2 in the lysosome. Collectively, these results suggest that in addition to modulating anti-apoptosis, HSF4 is able to regulate lysosome activity by at least controlling alpha B-crystallin expression, shedding light on a novel molecular mechanism of HSF4 in regulating lens epithelial cell homeostasis.  相似文献   

15.
16.
17.
The β-1,4-galactosyltransferase (β-1,4-GalT) V whose human and mouse genes were cloned by us has been suggested to be involved in the biosynthesis of N-glycans and O-glycans, and lactosylceramide. To determine its biological function, β-1,4-GalT V (B4galt5) mutant mice obtained by a gene trap method were analyzed. Analysis of pre- and post-implantation embryos revealed that the B4galt5−/− mice die by E10.5 while B4galt5+/− mice were born and grown normally. Histological study showed that most tissues are formed in B4galt5−/− embryos but their appearance at E10.5 is close to that of B4galt5+/− embryos at E9.0-9.5. The results indicate that the growth is delayed by one to one and half day in B4galt5−/− embryos when compared to B4galt5+/− embryos, which results in early death of the embryos by E10.5, probably due to hematopoietic and/or placental defects.  相似文献   

18.
In spite of the impact of aneuploidy on human health little is known concerning the molecular mechanisms involved in the formation of structural or numerical chromosome abnormalities during meiosis. Here, we provide novel evidence indicating that lack of PARP-1 function during oogenesis predisposes the female gamete to genome instability. During prophase I of meiosis, a high proportion of Parp-1(−/−) mouse oocytes exhibit a spectrum of meiotic defects including incomplete homologous chromosome synapsis or persistent histone H2AX phosphorylation in fully synapsed chromosomes at the late pachytene stage. Moreover, the X chromosome bivalent is also prone to exhibit persistent double strand DNA breaks (DSBs). In striking contrast, such defects were not detected in mutant pachytene spermatocytes. In fully-grown wild type oocytes at the germinal vesicle stage, PARP-1 protein associates with nuclear speckles and upon meiotic resumption, undergoes a striking re-localization towards spindle poles as well as pericentric heterochromatin domains at the metaphase II stage. Notably, a high proportion of in vivo matured Parp-1(−/−) oocytes show lack of recruitment of the kinetochore-associated protein BUB3 to centromeric domains and fail to maintain metaphase II arrest. Defects in chromatin modifications in the form of persistent histone H2AX phosphorylation during prophase I of meiosis and deficient sister chromatid cohesion during metaphase II predispose mutant oocytes to premature anaphase II onset upon removal from the oviductal environment. Our results indicate that PARP-1 plays a critical role in the maintenance of chromosome stability at key stages of meiosis in the female germ line. Moreover, in the metaphase II stage oocyte PARP-1 is required for the regulation of centromere structure and function through a mechanism that involves the recruitment of BUB3 protein to centromeric domains.  相似文献   

19.
20.
In order for cryopreservation to become a practical tool for aquaculture, optimized protocols must be developed for each species and cell type. Knowledge of a cell’s osmotic tolerance and membrane permeability characteristics can assist in optimized protocol development. In this study, these characteristics were determined for Pacific oyster oocytes and modified methods for loading and unloading ethylene glycol (EG) were tested. Oocytes were found to behave as ideal osmometers and their osmotically inactive fraction (Vb) was calculated to be 0.48. Oocytes exposed to NaCl solutions of 0.6 to 2.3 Osm fertilized at rates equivalent to oocytes left in seawater. This corresponds to volume changes of +27.3 and −38.1 ± 1.2%. The permeability of the oocytes to water (Lp) was determined to be 3.8 ± 0.4 × 10−2, 5.7 ± 0.8 × 10−2, and 13.2 ± 1.3 × 10−2 μm min−1 atm−1, when measured at temperatures of 5, 10 and 20 °C. The respective EG permeability values (Ps) were 9.5 ± 0.1 × 10−5, 14.6 ± 1.2 × 10−5, and 41.7 ± 2.4 × 10−5 cm min−1. The activation energies for Lp and Ps were determined to be 14.5 and 17.5 kcal mol−1, respectively. Different models for EG loading and unloading from oocytes were developed and tested. Post-thaw fertilization did not differ significantly between a published step addition method and single step addition at 20 °C. This represents a considerable reduction in handling. The results of this study demonstrate that the cryobiological characteristics of a given cell type should be taken into account when developing cryopreservation methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号