首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Wnt signaling in disease and in development   总被引:30,自引:0,他引:30  
Nusse R 《Cell research》2005,15(1):28-32
The highly conserved Wnt secreted proteins are critical mediators of cell-to-cell signaling during development of animals. Recent biochemical and genetic analyses have led to significant insight into understanding how Wnt signals work. The catalogue of Wnt signaling components has exploded. We now realize that multiple extracellular, cytoplasmic, and nuclear components modulate Wnt signaling. Moreover, receptor-ligand specificity and multiple feedback loops determine Wnt signaling outputs. It is also clear that Wnt signals are required for adult tissue maintenance. Perturbations in Wnt signaling cause human degenerative diseases as well as cancer.  相似文献   

3.
叶中德  吴畏 《生命科学》2007,19(4):359-363
非洲爪蟾是脊椎动物胚胎发育研究中的几种重要模式生物之一,为揭示早期胚胎发育中的分子调控机制做出了显著的贡献.其中一个重要的发现就是细胞信号通路在胚胎发育中起到非常关键的调控作用.本文简单介绍Wnt信号在爪蟾早期胚胎发育不同时期的几种调控作用.  相似文献   

4.
5.
Hematopoietic stem cells (HSCs) can self-renew and differentiate into all cell types of the blood. This is therapeutically important as HSC transplants can provide a curative effect for blood cancers and disorders. The process by which HSCs develop has been the subject of extensive research in a variety of model organisms; however, efforts to produce bonafide HSCs from pluripotent precursors capable of long-term multilineage reconstitution have fallen short. Studies in zebrafish, chicken, and mice have been instrumental in guiding efforts to derive HSCs from human pluripotent stem cells and have identified a complex set of molecular signals and cellular interactions mediated by such developmental regulators as fibroblast growth factor, Notch, transforming growth factor beta (TGFβ), and Wnt, which collectively promote the stepwise developmental progression toward mature HSCs. Tight temporal and spatial control of these signals is critical to generate the appropriate numbers of HSCs needed for the life of the organism. The role of the Wnt family of signaling proteins in hematopoietic development has been the subject of many studies owing in part to the complex nature of its signaling mechanisms. By integrating cell fate specification with cell polarity establishment, Wnt is uniquely capable of controlling complex biological processes, including at multiple stages of embryonic HSC development, from HSC specification to emergence from the hemogenic epithelium to subsequent expansion. This review highlights key signaling events where specific Wnt signals instruct and guide hematopoietic development in both zebrafish and mice and extend these findings to current efforts of generating HSCs in vitro.  相似文献   

6.
Type 2 diabetes mellitus impairs osteogenesis in bone marrow stromal cells (BMSCs). Bone morphogenetic protein 2 (BMP2) has been extensively applied for bone defect restoration and has been shown to activate the Wnt signaling pathway. The objective of this study was to investigate the effects of BMP2 on the cell proliferation and osteogenesis of type 2 diabetic BMSCs in rats and explore whether BMP2 induced osteogenesis via the stimulation of Wnt signaling pathway. The cell experiments were divided into DM (diabetic BMSCs), BMP25 (induced with 25 ng/ml BMP2), BMP100 (induced with 100 ng/ml BMP2) and BMP25  + XAV groups. All cells with or without the different concentrations of BMP2 were cultured under the same experimental conditions. The in vitro results indicated that BMP2 enhanced cell proliferation by 130%–157% and osteogenic differentiation by approximately two-fold in type 2 diabetic BMSCs. The expression levels of β-catenin, cyclin D1, Runx2 and c-myc related to the Wnt signaling pathway were also upregulated from 180% to 212% in BMP2-induced type 2 diabetic rat BMSCs, while the level of GSK3β decreased to 43%. In BMP2-induced type 2 diabetic BMSCs with calcium phosphate cement (CPC) scaffolds for osteoblast study in vivo, the appearance of newly formed bone dramatically increased to 175% compared with type 2 diabetic BMSCs. These data demonstrated that BMP2 enhanced bone regeneration in diabetic BMSCs by stimulating the Wnt signaling pathway with the accumulation of β-catenin and the depressed expression of GSK3β. Diabetic BMSCs associated with BMP2 might be a potential tissue-engineered construct for bone defects in type 2 diabetes mellitus.  相似文献   

7.
Biliary fibrosis is an important pathological indicator of hepatobiliary damage. Cholangiocyte is the key cell type involved in this process. To reveal the pathogenesis of biliary fibrosis, it is essential to understand the normal development as well as the aberrant generation and proliferation of cholangiocytes. Numerous reports suggest that the Wnt signaling pathway is implicated in the physiological and pathological processes of cholangiocyte development and ductular reaction. In this review, we summarize the effects of Wnt pathway in cholangiocyte development from embryonic stem cells, as well as the underlying mechanisms of cholangiocyte responses to adult ductal damage. Wnt signaling pathway is regulated in a step-wise manner during each of the liver differentiation stages from embryonic stem cells to functional mature cholangiocytes. With the modulation of Wnt pathway, cholangiocytes can also be generated from adult liver progenitor cells and mature hepatocytes to repair liver damage. Non-canonical Wnt signaling is triggered in the active ductal cells during biliary fibrosis. Targeted control of the Wnt signaling may hold the great potential to reduce and/or reverse the biliary fibrogenic process.  相似文献   

8.
Osteogenic differentiation refers to the process of bone formation and remodeling, which is controlled by complex molecular mechanisms. Activin A receptor type I (ACVR1) is reported to be associated with osteogenic differentiation. However, the underlying molecular mechanism remains elusive. Therefore, this study evaluates the function of ACVR1 in osteogenic differentiation through the Wnt signaling pathway. The expression of osteocalcin (Oc) and osterix together with osteogenic differentiation and mineralization was examined in ACVR1-knockout (KO) mouse. Furthermore, the Wnt signaling pathway was inhibited in bone marrow stromal cells (BMSCs) of mice to explore the role of the Wnt signaling pathway in osteogenic differentiation by means of alkaline phosphatase (ALP) activity detection and evaluation of mineralized nodules and calcium content. Subsequently, the effect of ACVR1 on the Wnt signaling pathway was assessed by determining the expression of ACVR1, β-catenin, glycogen synthase kinase 3 β (GSK3β), dickkopf-related protein 1 (DKK1), and frizzled class receptor 1 (FZD1). Both their effects on osteogenic differentiation were further evaluated by determination of Oc, osterix, and Runx2 expression. AVCR1 KO mice exhibited increased Oc and osterix expression and promoted bone resorption and formation. ACVR1-knockout was observed to activate the Wnt signaling pathway with an increase of β-catenin and reductions in GSK3β, DKK1, and FZD1. With the inhibited Wnt signaling pathway expression of Oc, osterix, and Runx2 was decreased, and ALP activity, mineralized nodule, and calcium content in cellular matrix were decreased as well, indicating that inactivation of the Wnt signaling pathway reduced the differentiation of BMSCs into osteoclasts. These findings indicate that ACVR1-knockout promotes osteogenic differentiation by activating the Wnt signaling pathway in mice.  相似文献   

9.
Wnt proteins are a family of secreted proteins that regulate many aspects of cellular functions. The discovery that mutations in low-density lipoprotein receptor-related protein 5, a putative Wnt coreceptor, could positively and negatively affect bone mass in humans generated an enormous amount of interest in the possible role of the Wnt signaling pathway in skeletal biology. Over the last decade, considerable progress has been made in determining the role of the canonical Wnt signaling pathway in various aspects of skeletal development. Furthermore, recent evidence indicates the important role of non-canonical Wnt signaling in skeletal development. In this review we discuss the current understanding of the role of Wnt signaling in chondrogenesis, osteoblastogenesis, and osteoclastogenesis.  相似文献   

10.
Knowledge of the molecular mechanisms regulating cell ingression, epithelial–mesenchymal transition and migration movements during amniote gastrulation is steadily improving. In the frog and fish embryo, Wnt5 and Wnt11 ligands are expressed around the blastopore and play an important role in regulating cell movements associated with gastrulation. In the chicken embryo, although Wnt5a and Wnt5b are expressed in the primitive streak, the known Wnt11 gene is expressed in paraxial and intermediate mesoderm, and in differentiated myocardial cells, but not in the streak. Here, we identify a previously uncharacterized chicken Wnt11 gene, Wnt11b, that is orthologous to the frog Wnt11 and zebrafish Wnt11 (silberblick) genes. Chicken Wnt11b is expressed in the primitive streak in a pattern similar to chicken Wnt5a and Wnt5b. When non-canonical Wnt signaling is blocked using a Dishevelled dominant-negative protein, gastrulation movements are inhibited and cells accumulate in the primitive streak. Furthermore, disruption of non-canonical Wnt signaling by overexpression of full-length or dominant-negative Wnt11b or Wnt5a constructions abrogates normal cell migration through the primitive streak. We conclude that non-canonical Wnt signaling, mediated in part by Wnt11b, is important for regulation of gastrulation cell movements in the avian embryo.  相似文献   

11.
张蔓丽  卢彦平  李亚里 《遗传》2015,37(3):233-239
初级纤毛是一类以微管为基础结构的细胞器,其来源于细胞的母中心粒,锚定在细胞膜并如“天线”般突出细胞表面。作为细胞感受器,初级纤毛从环境中接受各种信号,传导至细胞内引起细胞反应。近期的研究表明,初级纤毛对与胚胎发育密切相关的Wnt信号通路的传导起重要作用。纤毛的损害可造成Wnt信号通路的异常,并引起胚胎中多类脏器一系列的病理改变,导致初级纤毛相关疾病的发生。文章主要阐述了初级纤毛与Wnt/β-catenin、Wnt/PCP通路及初级纤毛相关疾病之间的关系,并对初级纤毛相关疾病的治疗进行了初步探讨。对初级纤毛与Wnt信号通路关系的深入研究将有助于人们对该类疾病的进一步诊断和治疗。  相似文献   

12.
13.
The Wnt signaling pathway plays a crucial role in the development and homeostasis of a variety of adult tissues and, as such, is emerging as an important therapeutic target for numerous diseases. Factors involved in the Wnt pathway are expressed throughout limb development and chondrogenesis and have been shown to be critical in joint homeostasis and endochondral ossification. Therefore, in this review, we discuss Wnt regulation of chondrogenic differentiation, hypertrophy and cartilage function. Moreover, we detail the role of the Wnt signaling pathway in cartilage degeneration and its potential to act as a target for therapy in osteoarthritis. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
Wnt信号通路参与外周免疫调节的研究进展   总被引:1,自引:0,他引:1  
Wnt信号通路最初是由于其在动物胚胎发育和形态发生过程中的作用而引起了人们的注意。过去二十多年来,人们又发现Wnt通路参与干细胞的分化及多种疾病的发生,这使它成为研究的一个热点。近年来的研究表明,Wnt通路与免疫系统也有密切的联系,不仅参与各种免疫细胞的发育分化,还能调控外周免疫细胞的功能。该文就对Wnt信号通路在外周免疫系统中的研究进展作一综述。  相似文献   

15.
Prostate cancer is a major cause of cancer-related death in males. Wnt/β-catenin signaling plays a critical role in the pathogenesis of this disease by regulating angiogenesis, drug resistance, cell proliferation, and apoptosis. Suppression of Wnt canonical or noncanonical signaling pathways via Wnt biological or pharmacological antagonists is a potentially novel therapeutic approach for patients with prostate cancer. This review summarizes the role of Wnt signaling inhibitors in the pathogenesis of prostate cancer for a better understanding and hence a better management of this disease.  相似文献   

16.
Bone mass homeostasis is regulated by an interaction of various factors, including growth factors, systemic hormones and mechanical loading. Two signal transduction pathways, the estrogen receptor (ER) and the Wnt/β-catenin signal transduction pathway, have been shown to have an important role in regulating osteoblast and osteoclast function and to be involved in mechanotransduction. Therefore, dysfunction of these pathways can lead to osteoporotic bone loss. However, less is known about the modulation of gene expression by the interaction of these pathways in response to mechanical strain. We performed in vitro stretch experiments using osteoblastic MC3T3-E1 cells to study the effect of both pathways and mechanical strain on the expression of cyclooxygenase-2 (Cox-2), which is involved in the synthesis of prostaglandins, modulators of bone formation and resorption. Using specific agonists and antagonists, we demonstrated a regulation by an interaction of these pathways in mechantransduction. Estradiol (E2) had a sensitizing effect on mechanically induced Cox-2 expression, which seemed to be ligand-specific as it could be abolished using the antiestrogen ICI182,780. However, mechanical strain in the presence of Wnt signaling activators diminished both the E2 sensitizing effect and the stimulatory effect of Wnt signaling in the absence of strain. This interaction might be one regulatory mechanism by which mechanical loading exerts its role in bone mass homeostasis.  相似文献   

17.
Dickkopf-1 (Dkk-1) is a secreted protein that acts as a potent inhibitor of the Wnt signal transduction pathway. It is thought that the antagonistic effect of Dkk-1 is specific to the canonical (Wnt/beta-catenin) pathway. In this study, we demonstrate that restoration of Dkk-1 expression suppresses cell growth and induces apoptotic cell death in beta-catenin-deficient mesothelioma cell lines H28 and MS-1. Furthermore, we found that a small-molecule inhibitor of JNK inhibited the apoptosis induced by Dkk-1 overexpression in these cells. Together, our data suggest that Dkk-1 may be able to antagonize Wnt signaling and exert its tumor suppressive effects through beta-catenin-independent non-canonical pathways (i.e., the Wnt/JNK pathway).  相似文献   

18.
Vitamin A derivatives (retinoids) are actively involved during vertebrate embryogenesis. However, exogenous retinoids have also long been known as potent teratogens. The defects caused by retinoid treatment are complex. Here, we provided evidence that RAR-mediated retinoid signaling can repress Xenopus blastula Wnt signaling and impair dorsal development. Exogenous retinoic acid (RA) could antagonize the dorsalizing effects of lithium chloride-mediated Wnt activation in blastula embryos. The Wnt-responsive reporter gene transgenesis and luciferase assay showed that excess RA can repress the Wnt signaling in blastula embryos. In addition, the downstream target genes of the Wnt signaling that direct embryonic dorsal development, were also down-regulated in the RA-treated embryos. Mechanically, RA did not interfere with the stability of beta-catenin, but promoted its nuclear accumulation. The inverse agonist of retinoic acid receptors (RAR) rescued the Wnt signaling repression by RA and relieved the RA-induced nuclear accumulation of beta-catenin. Our results explain one of the reasons for the complicated teratogenic effects of retinoids and shed light on the endogenous way of interactions between two developmentally important signaling pathways.  相似文献   

19.
Heparan sulfate proteoglycans (HSPGs) are constituents of the cell surface and extracellular matrix and are vital for various activities within the cell. The N-deacetylase/N-sulfotransferase (heparin glucosaminyl) family of enzymes, or NDST, modifies heparan sulfate (HS) by catalyzing both the N-deacetylation and the N-sulfation of N-acetylglucosamine residues. In zebrafish, a single ndst3 gene is an orthologue of both mammalian NDST3 and NDST4 genes. The role of ndst3 in zebrafish development has not been investigated and such study may provide insight into the role(s) of both mammalian orthologues. Here, we characterized expression of ndst3 during early development in zebrafish and found it to be predominately neuronal. We found that expression of ndst3 is sensitive to Wnt signaling manipulation, with stimulation of the Wnt pathway resulting in robust expansion of ndst3 expression domains. Finally, using CRISPR/Cas9 genome editing, we mutagenized the ndst3 gene and isolated an allele, ndst3nu20, resulting in a frameshift and premature protein truncation. We discovered Ndst3 is not essential for zebrafish survival as ndst3nu20 homozygous mutants are viable and fertile.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号