首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Anomalies of the aortic arch have long been of anatomicoclinical interest. Recent studies on gene-targeted mice have identified the candidate genes that are involved in the patterning and remodeling of the pharyngeal arch arteries. In this review, we discuss our present knowledge with regard to the signaling molecules that regulate specific aspects of arch artery development. We focus first on Hoxa3, because it plays a critical role in the regulation of the differentiation of the third pharyngeal arch. Hoxa3 is expressed by the neural crest cells that originate from the rhombomeres, viz., (r)5, r6, and r7, and populate the third pharyngeal arch; it is also expressed in the third pharyngeal pouch. In Hoxa3 homozygous null mutant mice, the third arch artery degenerates bilaterally at embryonic day 11.5, resulting in the malformation of the carotid artery system. Complex combinatorial signals among the neural crest cells, pharyngeal mesoderm, ectoderm, and pouch endoderm are required for the proper development of the arch arterial system. Therefore, we highlight the numerous signaling pathways and individual genes expressed by the ectomesenchymal neural crest cells and also by the other epithelial and mesodermal cells of the pharynx. Defects in these genes result in malformations of the arch artery derivatives. This review should deepen our understanding of congenital human syndromes with abnormal patterns of pharyngeal arch arteries.  相似文献   

3.
4.
Amphibian holoblastic cleavage in which all blastomeres contribute to any one of the three primary germ layers has been widely thought to be a developmental pattern in the stem lineage of vertebrates, and meroblastic cleavage to have evolved independently in each vertebrate lineage. In extant primitive vertebrates, agnathan lamprey and basal bony fishes also undergo holoblastic cleavage, and their vegetal blastomeres have been generally thought to contribute to embryonic endoderm. However, the present marker analyses in basal ray-finned fish bichir and agnathan lamprey embryos indicated that their mesoderm and endoderm develop in the equatorial marginal zone, and their vegetal cell mass is extraembryonic nutritive yolk cells, having non-cell autonomous meso-endoderm inducing activity. Eomesodermin (eomes), but not VegT, orthologs are expressed maternally in these animals, suggesting that VegT is a maternal factor for endoderm differentiation only in amphibian. The study raises the viewpoint that the lamprey/bichir type holoblastic development would have been ancestral to extant vertebrates and retained in their stem lineage; amphibian-type holoblastic development would have been acquired secondarily, accompanied by the exploitation of new molecular machinery such as maternal VegT.  相似文献   

5.
6.
To assess evolutional changes in the expression pattern of Otx paralogues, expression analyses were undertaken in fugu, bichir, skate and lamprey. Together with those in model vertebrates, the comparison suggested that a gnathostome ancestor would have utilized all of Otx1, Otx2 and Otx5 paralogues in organizer and anterior mesendoderm for head development. In this animal, Otx1 and Otx2 would have also functioned in specification of the anterior neuroectoderm at presomite stage and subsequent development of forebrain/midbrain at somite stage, while Otx5 expression would have already been specialized in epiphysis and eyes. Otx1 and Otx2 functions in anterior neuroectoderm and brain of the gnathostome ancestor would have been differentially maintained by Otx1 in a basal actinopterygian and by Otx2 in a basal sarcopterygian. Otx5 expression in head organizer and anterior mesendoderm seems to have been lost in the teleost lineage after divergence of bichir, and also from the amniotes after divergence of amphibians as independent events. Otx1 expression was lost from the organizer in the tetrapod lineage. In contrast, in a teleost ancestor prior to whole genome duplication, Otx1 and Otx2 would have both been expressed in the dorsal margin of blastoderm, embryonic shield, anterior mesendoderm, anterior neuroectoderm and forebrain/midbrain, at respective stages of head development. Subsequent whole genome duplication and the following genome changes would have caused different Otx paralogue usages in each teleost lineage. Lampreys also have three Otx paralogues; their sequences are highly diverged from gnathostome cognates, but their expression pattern is well related to those of skate Otx cognates.  相似文献   

7.
Endothelin-1 (Edn1), originally identified as a vasoconstrictor peptide, is involved in the development of cranial/cardiac neural crest-derived tissues and organs. In craniofacial development, Edn1 binds to Endothelin type-A receptor (Ednra) to induce homeobox genes Dlx5/Dlx6 and determines the mandibular identity in the first pharyngeal arch. However, it remains unsolved whether this pathway is also critical for pharyngeal arch artery development to form thoracic arteries. Here, we show that the Edn1/Ednra signaling is involved in pharyngeal artery development by controlling the fate of neural crest cells through a Dlx5/Dlx6-independent mechanism. Edn1 and Ednra knock-out mice demonstrate abnormalities in pharyngeal arch artery patterning, which include persistent first and second pharyngeal arteries, resulting in additional branches from common carotid arteries. Neural crest cell labeling with Wnt1-Cre transgene and immunostaining for smooth muscle cell markers revealed that neural crest cells abnormally differentiate into smooth muscle cells at the first and second pharyngeal arteries of Ednra knock-out embryos. By contrast, Dlx5/Dlx6 knockout little affect the development of pharyngeal arch arteries and coronary arteries, the latter of which is also contributed by neural crest cells through an Edn-dependent mechanism. These findings indicate that the Edn1/Ednra signaling regulates neural crest differentiation to ensure the proper patterning of pharyngeal arch arteries, which is independent of the regional identification of the pharyngeal arches along the dorsoventral axis mediated by Dlx5/Dlx6.  相似文献   

8.
The formation of the BMP gradient which patterns the DV axis in flies and vertebrates requires several extracellular modulators like the inhibitory protein Sog/Chordin, the metalloprotease Tolloid (Tld), which cleaves Sog/Chordin, and the CR domain protein Twisted gastrulation (Tsg). While flies and vertebrates have only one sog/chordin gene they possess several paralogues of tld and tsg. A simpler and probably ancestral situation is observed in the short-germ beetle Tribolium castaneum (Tc), which possesses only one tld and one tsg gene. Here we show that in T. castaneum tld is required for early BMP signalling except in the head region and Tc-tld function is, as expected, dependent on Tc-sog. In contrast, Tc-tsg is required for all aspects of early BMP signalling and acts in a Tc-sog-independent manner. For comparison with Drosophila melanogaster we constructed fly embryos lacking all early Tsg activity (tsg;;srw double mutants) and show that they still establish a BMP signalling gradient. Thus, our results suggest that the role of Tsg proteins for BMP gradient formation has changed during insect evolution.  相似文献   

9.
七鳃鳗遗传多样性与演化研究进展   总被引:2,自引:0,他引:2  
七鳃鳗(Petromyzonidae)是目前已知最古老的脊椎动物中惟一的幸存者.对其资源保护和演化发育生物学的研究正日益受到重视.本文从染色体、蛋白质和DNA水平总结近年来七鳃鳗遗传多样性与演化方面的研究进展.重点介绍了限制性酶切片段长度多态性、DNA随机扩增多态性、DNA扩增片段长度多态性、微卫星DNA标记等技术及线粒体DNA和功能基因研究应用于七鳃鳗种群遗传多样性、遗传分化、遗传结构、种质鉴定与渔业资源管理及系统进化等方面的新进展.  相似文献   

10.
Phenotypic robustness requires a process of developmental buffering that is largely not understood, but which can be disrupted by mutations. Here we show that in mef2cab1086 loss of function mutant embryos and early larvae, development of craniofacial hyoid bones, the opercle (Op) and branchiostegal ray (BR), becomes remarkably unstable; the large magnitude of the instability serves as a positive attribute to learn about features of this developmental buffering. The OpBR mutant phenotype variably includes bone expansion and fusion, Op duplication, and BR homeosis. Formation of a novel bone strut, or a bone bridge connecting the Op and BR together occurs frequently. We find no evidence that the phenotypic stability in the wild type is provided by redundancy between mef2ca and its co-ortholog mef2cb, or that it is related to the selector (homeotic) gene function of mef2ca. Changes in dorsal–ventral patterning of the hyoid arch also might not contribute to phenotypic instability in mutants. However, subsequent development of the bone lineage itself, including osteoblast differentiation and morphogenetic outgrowth, shows marked variation. Hence, steps along the developmental trajectory appear differentially sensitive to the loss of buffering, providing focus for the future study.  相似文献   

11.
Vertebrate Hox clusters contain protein-coding genes that regulate body axis development and microRNA (miRNA) genes whose functions are not yet well understood. We overexpressed the Hox cluster microRNA miR-196 in zebrafish embryos and found four specific, viable phenotypes: failure of pectoral fin bud initiation, deletion of the 6th pharyngeal arch, homeotic aberration and loss of rostral vertebrae, and reduced number of ribs and somites. Reciprocally, miR-196 knockdown evoked an extra pharyngeal arch, extra ribs, and extra somites, confirming endogenous roles of miR-196. miR-196 injection altered expression of hox genes and the signaling of retinoic acid through the retinoic acid receptor gene rarab. Knocking down rarab mimicked the pectoral fin phenotype of miR-196 overexpression, and reporter constructs tested in tissue culture and in embryos showed that the rarab 3′UTR is a miR-196 target for pectoral fin bud initiation. These results show that a Hox cluster microRNA modulates development of axial patterning similar to nearby protein-coding Hox genes, and acts on appendicular patterning at least in part by modulating retinoic acid signaling.  相似文献   

12.
Several syndromes characterized by defects in cardiovascular and craniofacial development are associated with a hemizygous deletion of chromosome 22q11 in humans and involve defects in pharyngeal arch and neural crest cell development. Recent efforts have focused on identifying 22q11 deletion syndrome modifying loci. In this study, we show that mouse embryos deficient for Gbx2 display aberrant neural crest cell patterning and defects in pharyngeal arch-derived structures. Gbx2(-/-) embryos exhibit cardiovascular defects associated with aberrant development of the fourth pharyngeal arch arteries including interrupted aortic arch type B, right aortic arch, and retroesophageal right subclavian artery. Other developmental abnormalities include overriding aorta, ventricular septal defects, cranial nerve, and craniofacial skeletal patterning defects. Recently, Fgf8 has been proposed as a candidate modifier for 22q11 deletion syndromes. Here, we demonstrate that Fgf8 and Gbx2 expression overlaps in regions of the developing pharyngeal arches and that they interact genetically during pharyngeal arch and cardiovascular development.  相似文献   

13.
The genetic mechanisms that control the establishment of early polarities and their link with embryonic axis specification and patterning seem to substantially diverge across vertebrates. In amphibians and teleosts, the establishment of an early dorso-ventral polarity determines both the site of axis formation and its rostro-caudal orientation. In contrast, amniotes retain a considerable plasticity for their site of axis formation until blastula stages and rely on signals secreted by extraembryonic tissues, which have no clear equivalents in the former, for the establishment of their rostro-caudal pattern. The rationale for these differences remains unknown. Through detailed expression analyses of key development genes in a chondrichthyan, the dogfish Scyliorhinus canicula, we have reconstructed the ancestral pattern of axis specification in jawed vertebrates. We show that the dogfish displays compelling similarities with amniotes at blastula and early gastrula stages, including the presence of clear homologs of the hypoblast and extraembryonic ectoderm. In the ancestral state, these territories are specified at opposite poles of an early axis of bilateral symmetry, homologous to the dorso-ventral axis of amphibians or teleosts, and aligned with the later forming embryonic axis, from head to tail. Comparisons with amniotes suggest that a dorsal expansion of extraembryonic ectoderm, resulting in an apparently radial symmetry at late blastula stages, has taken place in their lineage. The synthesis of these results with those of functional analyses in model organisms supports an evolutionary link between the dorso-ventral polarity of amphibians and teleosts and the embryonic-extraembryonic organisation of amniotes. It leads to a general model of axis specification in gnathostomes, which provides a comparative framework for a reassessment of conservations both among vertebrates and with more distant metazoans.  相似文献   

14.
During spermiogenesis in some internally fertilizing molluscs and insects, the post-meiotic spermatid nucleus develops via a sequence of complex patterns of the nuclear contents (chromatin and nucleoplasm) on the way to final chromatin condensation. We have examined the TEM data on these sequences for three species: Philaenus spumarius(a homopteran insect), Murex brandaris (a gastropod mollusc), and Eledone cirrhosa(a cephalopod mollusc). For each of these, spatially quantitative study reveals a constant spacing between pattern repeats through changes from granular to fibrillar to lamellar pattern, followed finally by a shrinkage of the spacing. Therefore we distinguish a "patterning" stage followed by a "condensation" stage. The former appears to demand a dynamic explanation, because there is no sign of structural connections to establish the part of the spacing that crosses the nucleoplasm. We consider types of dynamic mechanism, and show that for "nanostructural" dimensions (tens of nanometers as pattern spacing) reaction-diffusion dynamics are quite inappropriate, but that separation of two fluid phases by a mechanism similar to what is known as "spinodal decomposition" is a very attractive possibility.  相似文献   

15.
16.
Steroidal oestrogens have been isolated from marine and terrestrial animals representative of all major classes of vertebrates including fish, amphibians, reptiles, birds and mammals. In general, oestrogens are responsible for most features characteristic of the female sex of a species, such as metabolic, behavioural and morphological changes during the stages of reproduction; they also support several processes in males. The evolution of the hormonal system always involves both the ligand and its sites of interaction. In the case of oestrogens, the steroid producing enzymes, mainly the aromatase complex, and the oestrogen receptor belong together within their co-evolution. The finding of oestrogenic steroids, the more recent identification of aromatase and receptor genes and their expression fit together, thereby confirming the importance for all vertebrates. Within the present paper, the evolution of the physiological functions of oestrogens from oviparous vertebrates to Eutherian mammals, oestrogen biosynthesis, metabolization and signalling pathways will be reviewed in detail.  相似文献   

17.
Proper craniofacial development requires the orchestrated integration of multiple specialized tissue interactions. Recent analyses suggest that craniofacial development is not dependent upon neural crest pre-programming as previously thought but is regulated by a more complex integration of cell and tissue interactions. In the absence of neural crest cells it is still possible to obtain normal arch patterning indicating that neural crest is not responsible for patterning all of arch development. The mesoderm, endoderm and surface ectoderm tissues play a role in the patterning of the branchial arches, and there is now strong evidence that Hoxa2 acts as a selector gene for the pathways that govern second arch structures.  相似文献   

18.
Embryos that are homozygous for Splotch, a null allele of Pax3, have a severe neural crest cell (NCC) deficiency that generates a complex phenotype including spina bifida, exencephaly and cardiac outflow tract abnormalities. Contrary to the widely held perception that thymus aplasia or hypoplasia is a characteristic feature of Pax3Sp/Sp embryos, we find that thymic rudiments are larger and parathyroid rudiments are smaller in E11.5-12.5 Pax3Sp/Sp compared to Pax3+/+ embryos. The thymus originates from bilateral third pharyngeal pouch primordia containing endodermal progenitors of both thymus and parathyroid glands. Analyses of Foxn1 and Gcm2 expression revealed a dorsal shift in the border between parathyroid- and thymus-fated domains at E11.5, with no change in the overall cellularity or volume of each shared primordium. The border shift increases the allocation of third pouch progenitors to the thymus domain and correspondingly decreases allocation to the parathyroid domain. Initial patterning in the E10.5 pouch was normal suggesting that the observed change in the location of the organ domain interface arises during border refinement between E10.5 and E11.5. Given the well-characterized NCC defects in Splotch mutants, these findings implicate NCCs in regulating patterning of third pouch endoderm into thymus- versus parathyroid-specified domains, and suggest that organ size is determined in part by the number of progenitor cells specified to a given fate.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号