首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
Suzuki N  Furusawa C  Kaneko K 《PloS one》2011,6(11):e27232
The lack of understanding of stem cell differentiation and proliferation is a fundamental problem in developmental biology. Although gene regulatory networks (GRNs) for stem cell differentiation have been partially identified, the nature of differentiation dynamics and their regulation leading to robust development remain unclear. Herein, using a dynamical system modeling cell approach, we performed simulations of the developmental process using all possible GRNs with a few genes, and screened GRNs that could generate cell type diversity through cell-cell interactions. We found that model stem cells that both proliferated and differentiated always exhibited oscillatory expression dynamics, and the differentiation frequency of such stem cells was regulated, resulting in a robust number distribution. Moreover, we uncovered the common regulatory motifs for stem cell differentiation, in which a combination of regulatory motifs that generated oscillatory expression dynamics and stabilized distinct cellular states played an essential role. These findings may explain the recently observed heterogeneity and dynamic equilibrium in cellular states of stem cells, and can be used to predict regulatory networks responsible for differentiation in stem cell systems.  相似文献   

7.
8.
9.
10.
In this paper, the global exponential stability in Lagrange sense for genetic regulatory networks (GRNs) with SUM regulatory logic is firstly studied. By constructing appropriate Lyapunov-like functions, several criteria are presented for the boundedness, ultimate boundedness and global exponential attractivity of GRNs. It can be obtained that GRNs with SUM regulatory logic are unconditionally globally exponentially stable in Lagrange sense. These results can be applied to analyze monostable as well as multistable networks. Furthermore, to analyze the stability for GRNs more comprehensively, the existence of equilibrium point of GRNs is proved, and some sufficient conditions of the global exponential stability in Lyapunov sense for GRNs are derived. Finally two numerical examples are given to illustrate the application of the obtained results.  相似文献   

11.
Understanding how metabolic reactions, cell signaling, and developmental pathways translate the genome of an organism into its phenotype is a grand challenge in biology. Genome-wide association studies (GWAS) statistically connect genotypes to phenotypes, without any recourse to known molecular interactions, whereas a molecular biology approach directly ties gene function to phenotype through gene regulatory networks (GRNs). Using natural variation in allele-specific expression, GWAS and GRN approaches can be merged into a single framework via structural equation modeling (SEM). This approach leverages the myriad of polymorphisms in natural populations to elucidate and quantitate the molecular pathways that underlie phenotypic variation. The SEM framework can be used to quantitate a GRN, evaluate its consistency across environments or sexes, identify the differences in GRNs between species, and annotate GRNs de novo in non-model organisms.  相似文献   

12.

Motivation

Conventional identification methods for gene regulatory networks (GRNs) have overwhelmingly adopted static topology models, which remains unchanged over time to represent the underlying molecular interactions of a biological system. However, GRNs are dynamic in response to physiological and environmental changes. Although there is a rich literature in modeling static or temporally invariant networks, how to systematically recover these temporally changing networks remains a major and significant pressing challenge. The purpose of this study is to suggest a two-step strategy that recovers time-varying GRNs.

Results

It is suggested in this paper to utilize a switching auto-regressive model to describe the dynamics of time-varying GRNs, and a two-step strategy is proposed to recover the structure of time-varying GRNs. In the first step, the change points are detected by a Kalman-filter based method. The observed time series are divided into several segments using these detection results; and each time series segment belonging to two successive demarcating change points is associated with an individual static regulatory network. In the second step, conditional network structure identification methods are used to reconstruct the topology for each time interval. This two-step strategy efficiently decouples the change point detection problem and the topology inference problem. Simulation results show that the proposed strategy can detect the change points precisely and recover each individual topology structure effectively. Moreover, computation results with the developmental data of Drosophila Melanogaster show that the proposed change point detection procedure is also able to work effectively in real world applications and the change point estimation accuracy exceeds other existing approaches, which means the suggested strategy may also be helpful in solving actual GRN reconstruction problem.  相似文献   

13.
14.
Protein sequestration occurs when an active protein is sequestered by a repressor into an inactive complex. Using mathematical and computational modeling, we show how this regulatory mechanism (called “molecular titration”) can generate ultrasensitive or “all-or-none” responses that are equivalent to highly cooperative processes. The ultrasensitive nature of the input-output response is mainly determined by two parameters: the dimer dissociation constant and the repressor concentration. Because in vivo concentrations are tunable through a variety of mechanisms, molecular titration represents a flexible mechanism for generating ultrasensitivity. Using physiological parameters, we report how details of in vivo protein degradation affect the strength of the ultrasensitivity at steady state. Given that developmental systems often transduce signals into cell-fate decisions on timescales incompatible with steady state, we further examine whether molecular titration can produce ultrasensitive responses within physiologically relevant time intervals. Using Drosophila somatic sex determination as a developmental paradigm, we demonstrate that molecular titration can generate ultrasensitivity on timescales compatible with most cell-fate decisions. Gene duplication followed by loss-of-function mutations can create dominant negatives that titrate and compete with the original protein. Dominant negatives are abundant in gene regulatory circuits, and our results suggest that molecular titration might be generating an ultrasensitive response in these networks.  相似文献   

15.
16.
17.
The network of interacting regulatory signals within a cell comprises one of the most complex and powerful computational systems in biology. Gene regulatory networks (GRNs) play a key role in transforming the information encoded in a genome into morphological form. To achieve this feat, GRNs must respond to and integrate environmental signals with their internal dynamics in a robust and coordinated fashion. The highly dynamic nature of this process lends itself to interpretation and analysis in the language of dynamical models. Modeling provides a means of systematically untangling the complicated structure of GRNs, a framework within which to simulate the behavior of reconstructed systems and, in some cases, suites of analytic tools for exploring that behavior and its implications. This review provides a general background to the idea of treating a regulatory network as a dynamical system, and describes a variety of different approaches that have been taken to the dynamical modeling of GRNs. Birth Defects Research (Part C) 87:131–142, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号